This repository has been archived on 2022-07-14 . You can view files and clone it, but cannot push or open issues or pull requests.
2021工训赛国赛
说明
使用SSD-MobileNetV1
实现了数据集制作 模型训练 模型测试 模型部署 全过程
环境配置
换源:
echo '
auto_activate_base: false
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
' > ~/.condarc
配置环境:
conda create -n gxs-36 python=3.6 -y
conda activate gxs-36
pip install licsber
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia -y
Description
Languages
Python
99.2%
Shell
0.8%