2021工训赛目标检测
This repository has been archived on 2022-07-14. You can view files and clone it, but cannot push or open issues or pull requests.
Go to file
2022-03-02 19:32:08 +08:00
sh add 原版代码. 2022-03-02 19:32:08 +08:00
src add 原版代码. 2022-03-02 19:32:08 +08:00
.gitignore init commit. 2022-03-02 19:30:41 +08:00
README.md init commit. 2022-03-02 19:30:41 +08:00

2021工训赛国赛

说明

使用SSD-MobileNetV1
实现了数据集制作 模型训练 模型测试 模型部署 全过程

环境配置

换源:

echo '
auto_activate_base: false
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
' > ~/.condarc

配置环境:

conda create -n gxs-36 python=3.6 -y
conda activate gxs-36
pip install licsber
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia -y