add 原版代码.
This commit is contained in:
parent
ba030ca198
commit
8536ade252
6
sh/activate.sh
Normal file
6
sh/activate.sh
Normal file
@ -0,0 +1,6 @@
|
||||
export PYTHONPATH=/home/licsber/services/gxs/src
|
||||
PY=/home/licsber/anaconda3/envs/gxs-36/bin/python
|
||||
|
||||
hostname
|
||||
echo $PYTHONPATH
|
||||
echo $PY
|
11
sh/deploy.sh
Normal file
11
sh/deploy.sh
Normal file
@ -0,0 +1,11 @@
|
||||
#!/usr/bin/env zsh
|
||||
|
||||
SRC=/Users/licsber/Coding/Python/2021工训赛/
|
||||
DST=192.168.1.102:/home/licsber/gx/
|
||||
rsync -rtvzhP $SRC $DST --delete-after --exclude "venv/" --exclude "__pycache__/" --exclude "*.onnx" --exclude "*.engine" --exclude ".git/"
|
||||
|
||||
SRC=/Users/licsber/datasets/工训赛/models/
|
||||
|
||||
cd "$SRC" || exit
|
||||
rsync -rtvzhP ssd-mobilenet.onnx $DST
|
||||
rsync -rtvzhP labels.txt $DST
|
17
sh/ser.sh
Normal file
17
sh/ser.sh
Normal file
@ -0,0 +1,17 @@
|
||||
#!/usr/bin/env zsh
|
||||
|
||||
SRC=/Users/licsber/Coding/Python/2021工训赛/
|
||||
DST=ser:/home/licsber/services/gxs/
|
||||
|
||||
rsync -rtvzhP $SRC $DST --delete-after --exclude "venv/" --exclude "__pycache__/"
|
||||
|
||||
SRC=/Users/licsber/datasets/工训赛/models/
|
||||
DST=ser:/datasets/工训赛/models
|
||||
cd "$SRC" || exit
|
||||
|
||||
rsync -tvzhP labels.txt $DST
|
||||
rsync -rtvzhP $SRC/../voc/ $DST/../voc --delete-after
|
||||
rsync -tvzhP mobilenet-v1-ssd-mp-0_675.pth $DST
|
||||
rsync -tvzhP ser:/datasets/工训赛/models/mb1-ssd-Epoch-60-Loss-1.0784624990294962.pth /Users/licsber/datasets/工训赛/models/
|
||||
#rsync -tvzhP ssd-mobilenet.onnx $DST
|
||||
#rsync -tvzhP mb1-ssd-Epoch-28-Loss-1.1538286421980177.pth $DST
|
3
sh/train.sh
Normal file
3
sh/train.sh
Normal file
@ -0,0 +1,3 @@
|
||||
source activate.sh
|
||||
|
||||
$PY "$PYTHONPATH/train.py" "$@"
|
15
src/0_extract_video.py
Normal file
15
src/0_extract_video.py
Normal file
@ -0,0 +1,15 @@
|
||||
import cv2
|
||||
|
||||
from config import VIDEO_PATH, IMG_PATH
|
||||
|
||||
count = 0
|
||||
for avi in VIDEO_PATH.glob('*.avi'):
|
||||
cap = cv2.VideoCapture(str(avi))
|
||||
while True:
|
||||
suc, bgr = cap.read()
|
||||
if not suc:
|
||||
break
|
||||
|
||||
save_name = IMG_PATH / f"{count}.jpg"
|
||||
cv2.imwrite(str(save_name), bgr)
|
||||
count += 1
|
8
src/1_rename_img.py
Normal file
8
src/1_rename_img.py
Normal file
@ -0,0 +1,8 @@
|
||||
from config import IMG_PATH
|
||||
|
||||
count = 0
|
||||
all_files = list(IMG_PATH.glob('*.jpg'))
|
||||
all_files.sort()
|
||||
for img in all_files:
|
||||
img.rename(img.parent / f"{count:06d}.jpg")
|
||||
count += 1
|
48
src/2_make_voc.py
Normal file
48
src/2_make_voc.py
Normal file
@ -0,0 +1,48 @@
|
||||
import random
|
||||
|
||||
from config import IMG_PATH, VOC_PATH, CLASSES
|
||||
|
||||
random.seed(233)
|
||||
annos = VOC_PATH / 'Annotations'
|
||||
datasets = VOC_PATH / 'ImageSets' / 'Main'
|
||||
images = VOC_PATH / 'JPEGImages'
|
||||
annos.mkdir(exist_ok=True)
|
||||
datasets.mkdir(parents=True, exist_ok=True)
|
||||
images.mkdir(exist_ok=True)
|
||||
|
||||
for img in IMG_PATH.glob('*.jpg'):
|
||||
img.rename(images / img.name)
|
||||
|
||||
for anno in IMG_PATH.glob('*.xml'):
|
||||
anno.rename(annos / anno.name)
|
||||
|
||||
labels = VOC_PATH / 'labels.txt'
|
||||
labels.write_text('\n'.join(CLASSES))
|
||||
|
||||
train_file = datasets / 'train.txt'
|
||||
val_file = datasets / 'val.txt'
|
||||
train_val_file = datasets / 'trainval.txt'
|
||||
test_file = datasets / 'test.txt'
|
||||
|
||||
train_ratio = 0.7
|
||||
val_ratio = 0.1
|
||||
|
||||
total = list(annos.glob('*.xml'))
|
||||
random.shuffle(total)
|
||||
total_nums = len(total)
|
||||
|
||||
train_num = int(total_nums * train_ratio)
|
||||
val_num = int(total_nums * val_ratio)
|
||||
|
||||
train = total[:train_num]
|
||||
val = total[train_num:train_num + val_num]
|
||||
test = total[train_num + val_num:]
|
||||
|
||||
train = '\n'.join([i.name.rstrip('.xml') for i in train])
|
||||
val = '\n'.join([i.name.rstrip('.xml') for i in val])
|
||||
test = '\n'.join([i.name.rstrip('.xml') for i in test])
|
||||
|
||||
train_file.write_text(train)
|
||||
val_file.write_text(val)
|
||||
test_file.write_text(test)
|
||||
train_val_file.write_text(train + '\n' + val)
|
322
src/3_train_ssd.py
Normal file
322
src/3_train_ssd.py
Normal file
@ -0,0 +1,322 @@
|
||||
import argparse
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR
|
||||
from torch.utils.data import DataLoader, ConcatDataset
|
||||
|
||||
from config import VOC_PATH, MODEL_PATH
|
||||
from vision.datasets.voc_dataset import VOCDataset
|
||||
from vision.nn.multibox_loss import MultiboxLoss
|
||||
from vision.ssd.config import mobilenetv1_ssd_config
|
||||
from vision.ssd.config import squeezenet_ssd_config
|
||||
from vision.ssd.config import vgg_ssd_config
|
||||
from vision.ssd.data_preprocessing import TrainAugmentation, TestTransform
|
||||
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite
|
||||
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd
|
||||
from vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite
|
||||
from vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite
|
||||
from vision.ssd.ssd import MatchPrior
|
||||
from vision.ssd.vgg_ssd import create_vgg_ssd
|
||||
from vision.utils.misc import str2bool, Timer, freeze_net_layers, store_labels
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Single Shot MultiBox Detector Training With PyTorch')
|
||||
|
||||
parser.add_argument("--dataset-type", default="voc", type=str,
|
||||
help='Specify dataset type. Currently supports voc and open_images.')
|
||||
parser.add_argument('--datasets', '--data', nargs='+', default=[str(VOC_PATH)], help='Dataset directory path')
|
||||
parser.add_argument('--balance-data', action='store_true',
|
||||
help="Balance training data by down-sampling more frequent labels.")
|
||||
|
||||
parser.add_argument('--net', default="mb1-ssd",
|
||||
help="The network architecture, it can be mb1-ssd, mb1-lite-ssd, mb2-ssd-lite or vgg16-ssd.")
|
||||
parser.add_argument('--freeze-base-net', action='store_true',
|
||||
help="Freeze base net layers.")
|
||||
parser.add_argument('--freeze-net', action='store_true',
|
||||
help="Freeze all the layers except the prediction head.")
|
||||
parser.add_argument('--mb2-width-mult', default=1.0, type=float,
|
||||
help='Width Multiplifier for MobilenetV2')
|
||||
|
||||
# Params for loading pretrained basenet or checkpoints.
|
||||
parser.add_argument('--base-net', help='Pretrained base model')
|
||||
parser.add_argument('--pretrained-ssd', default=str(MODEL_PATH) + '/mobilenet-v1-ssd-mp-0_675.pth', type=str,
|
||||
help='Pre-trained base model')
|
||||
parser.add_argument('--resume', default=None, type=str,
|
||||
help='Checkpoint state_dict file to resume training from')
|
||||
|
||||
# Params for SGD
|
||||
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
|
||||
help='initial learning rate')
|
||||
parser.add_argument('--momentum', default=0.9, type=float,
|
||||
help='Momentum value for optim')
|
||||
parser.add_argument('--weight-decay', default=5e-4, type=float,
|
||||
help='Weight decay for SGD')
|
||||
parser.add_argument('--gamma', default=0.1, type=float,
|
||||
help='Gamma update for SGD')
|
||||
parser.add_argument('--base-net-lr', default=0.001, type=float,
|
||||
help='initial learning rate for base net, or None to use --lr')
|
||||
parser.add_argument('--extra-layers-lr', default=None, type=float,
|
||||
help='initial learning rate for the layers not in base net and prediction heads.')
|
||||
|
||||
# Scheduler
|
||||
parser.add_argument('--scheduler', default="cosine", type=str,
|
||||
help="Scheduler for SGD. It can one of multi-step and cosine")
|
||||
|
||||
# Params for Multi-step Scheduler
|
||||
parser.add_argument('--milestones', default="80,100", type=str,
|
||||
help="milestones for MultiStepLR")
|
||||
|
||||
# Params for Cosine Annealing
|
||||
parser.add_argument('--t-max', default=100, type=float,
|
||||
help='T_max value for Cosine Annealing Scheduler.')
|
||||
|
||||
# Train params
|
||||
parser.add_argument('--batch-size', default=16, type=int,
|
||||
help='Batch size for training')
|
||||
parser.add_argument('--num-epochs', '--epochs', default=100, type=int,
|
||||
help='the number epochs')
|
||||
parser.add_argument('--num-workers', '--workers', default=0, type=int,
|
||||
help='Number of workers used in dataloading')
|
||||
parser.add_argument('--validation-epochs', default=1, type=int,
|
||||
help='the number epochs between running validation')
|
||||
parser.add_argument('--debug-steps', default=10, type=int,
|
||||
help='Set the debug log output frequency.')
|
||||
parser.add_argument('--use-cuda', default=True, type=str2bool,
|
||||
help='Use CUDA to train model')
|
||||
parser.add_argument('--checkpoint-folder', '--model-dir', default=str(MODEL_PATH),
|
||||
help='Directory for saving checkpoint models')
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
|
||||
format='%(asctime)s - %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
|
||||
|
||||
args = parser.parse_args()
|
||||
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu")
|
||||
|
||||
if args.use_cuda and torch.cuda.is_available():
|
||||
torch.backends.cudnn.benchmark = True
|
||||
logging.info("Using CUDA...")
|
||||
|
||||
|
||||
def train(loader, net, criterion, optimizer, device, debug_steps=100, epoch=-1):
|
||||
net.train(True)
|
||||
running_loss = 0.0
|
||||
running_regression_loss = 0.0
|
||||
running_classification_loss = 0.0
|
||||
for i, data in enumerate(loader):
|
||||
images, boxes, labels = data
|
||||
images = images.to(device)
|
||||
boxes = boxes.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
confidence, locations = net(images)
|
||||
regression_loss, classification_loss = criterion(confidence, locations, labels, boxes)
|
||||
loss = regression_loss + classification_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
running_regression_loss += regression_loss.item()
|
||||
running_classification_loss += classification_loss.item()
|
||||
if i and i % debug_steps == 0:
|
||||
avg_loss = running_loss / debug_steps
|
||||
avg_reg_loss = running_regression_loss / debug_steps
|
||||
avg_clf_loss = running_classification_loss / debug_steps
|
||||
logging.info(
|
||||
f"Epoch: {epoch}, Step: {i}/{len(loader)}, " +
|
||||
f"Avg Loss: {avg_loss:.4f}, " +
|
||||
f"Avg Regression Loss {avg_reg_loss:.4f}, " +
|
||||
f"Avg Classification Loss: {avg_clf_loss:.4f}"
|
||||
)
|
||||
running_loss = 0.0
|
||||
running_regression_loss = 0.0
|
||||
running_classification_loss = 0.0
|
||||
|
||||
|
||||
def test(loader, net, criterion, device):
|
||||
net.eval()
|
||||
running_loss = 0.0
|
||||
running_regression_loss = 0.0
|
||||
running_classification_loss = 0.0
|
||||
num = 0
|
||||
for _, data in enumerate(loader):
|
||||
images, boxes, labels = data
|
||||
images = images.to(device)
|
||||
boxes = boxes.to(device)
|
||||
labels = labels.to(device)
|
||||
num += 1
|
||||
|
||||
with torch.no_grad():
|
||||
confidence, locations = net(images)
|
||||
regression_loss, classification_loss = criterion(confidence, locations, labels, boxes)
|
||||
loss = regression_loss + classification_loss
|
||||
|
||||
running_loss += loss.item()
|
||||
running_regression_loss += regression_loss.item()
|
||||
running_classification_loss += classification_loss.item()
|
||||
return running_loss / num, running_regression_loss / num, running_classification_loss / num
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
timer = Timer()
|
||||
|
||||
logging.info(args)
|
||||
|
||||
if args.checkpoint_folder:
|
||||
args.checkpoint_folder = os.path.expanduser(args.checkpoint_folder)
|
||||
|
||||
if not os.path.exists(args.checkpoint_folder):
|
||||
os.mkdir(args.checkpoint_folder)
|
||||
|
||||
if args.net == 'vgg16-ssd':
|
||||
create_net = create_vgg_ssd
|
||||
config = vgg_ssd_config
|
||||
elif args.net == 'mb1-ssd':
|
||||
create_net = create_mobilenetv1_ssd
|
||||
config = mobilenetv1_ssd_config
|
||||
elif args.net == 'mb1-ssd-lite':
|
||||
create_net = create_mobilenetv1_ssd_lite
|
||||
config = mobilenetv1_ssd_config
|
||||
elif args.net == 'sq-ssd-lite':
|
||||
create_net = create_squeezenet_ssd_lite
|
||||
config = squeezenet_ssd_config
|
||||
elif args.net == 'mb2-ssd-lite':
|
||||
create_net = lambda num: create_mobilenetv2_ssd_lite(num, width_mult=args.mb2_width_mult)
|
||||
config = mobilenetv1_ssd_config
|
||||
else:
|
||||
logging.fatal("The net type is wrong.")
|
||||
parser.print_help(sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
train_transform = TrainAugmentation(config.image_size, config.image_mean, config.image_std)
|
||||
target_transform = MatchPrior(config.priors, config.center_variance,
|
||||
config.size_variance, 0.5)
|
||||
|
||||
test_transform = TestTransform(config.image_size, config.image_mean, config.image_std)
|
||||
|
||||
logging.info("Prepare training datasets.")
|
||||
datasets = []
|
||||
for dataset_path in args.datasets:
|
||||
dataset = VOCDataset(dataset_path, transform=train_transform,
|
||||
target_transform=target_transform)
|
||||
label_file = os.path.join(args.checkpoint_folder, "labels.txt")
|
||||
store_labels(label_file, dataset.class_names)
|
||||
num_classes = len(dataset.class_names)
|
||||
datasets.append(dataset)
|
||||
|
||||
logging.info(f"Stored labels into file {label_file}.")
|
||||
train_dataset = ConcatDataset(datasets)
|
||||
logging.info("Train dataset size: {}".format(len(train_dataset)))
|
||||
train_loader = DataLoader(train_dataset, args.batch_size,
|
||||
num_workers=args.num_workers,
|
||||
shuffle=True)
|
||||
|
||||
logging.info("Prepare Validation datasets.")
|
||||
val_dataset = VOCDataset(dataset_path, transform=test_transform,
|
||||
target_transform=target_transform, is_test=True)
|
||||
logging.info("Validation dataset size: {}".format(len(val_dataset)))
|
||||
val_loader = DataLoader(val_dataset, args.batch_size,
|
||||
num_workers=args.num_workers,
|
||||
shuffle=False)
|
||||
|
||||
logging.info("Build network.")
|
||||
net = create_net(num_classes)
|
||||
min_loss = -10000.0
|
||||
last_epoch = -1
|
||||
|
||||
base_net_lr = args.base_net_lr if args.base_net_lr is not None else args.lr
|
||||
extra_layers_lr = args.extra_layers_lr if args.extra_layers_lr is not None else args.lr
|
||||
|
||||
if args.freeze_base_net:
|
||||
logging.info("Freeze base net.")
|
||||
freeze_net_layers(net.base_net)
|
||||
params = itertools.chain(net.source_layer_add_ons.parameters(), net.extras.parameters(),
|
||||
net.regression_headers.parameters(), net.classification_headers.parameters())
|
||||
params = [
|
||||
{'params': itertools.chain(
|
||||
net.source_layer_add_ons.parameters(),
|
||||
net.extras.parameters()
|
||||
), 'lr': extra_layers_lr},
|
||||
{'params': itertools.chain(
|
||||
net.regression_headers.parameters(),
|
||||
net.classification_headers.parameters()
|
||||
)}
|
||||
]
|
||||
elif args.freeze_net:
|
||||
freeze_net_layers(net.base_net)
|
||||
freeze_net_layers(net.source_layer_add_ons)
|
||||
freeze_net_layers(net.extras)
|
||||
params = itertools.chain(net.regression_headers.parameters(), net.classification_headers.parameters())
|
||||
logging.info("Freeze all the layers except prediction heads.")
|
||||
else:
|
||||
params = [
|
||||
{'params': net.base_net.parameters(), 'lr': base_net_lr},
|
||||
{'params': itertools.chain(
|
||||
net.source_layer_add_ons.parameters(),
|
||||
net.extras.parameters()
|
||||
), 'lr': extra_layers_lr},
|
||||
{'params': itertools.chain(
|
||||
net.regression_headers.parameters(),
|
||||
net.classification_headers.parameters()
|
||||
)}
|
||||
]
|
||||
|
||||
# load a previous model checkpoint (if requested)
|
||||
timer.start("Load Model")
|
||||
if args.resume:
|
||||
logging.info(f"Resume from the model {args.resume}")
|
||||
net.load(args.resume)
|
||||
elif args.base_net:
|
||||
logging.info(f"Init from base net {args.base_net}")
|
||||
net.init_from_base_net(args.base_net)
|
||||
elif args.pretrained_ssd:
|
||||
logging.info(f"Init from pretrained ssd {args.pretrained_ssd}")
|
||||
net.init_from_pretrained_ssd(args.pretrained_ssd)
|
||||
logging.info(f'Took {timer.end("Load Model"):.2f} seconds to load the model.')
|
||||
|
||||
net.to(DEVICE)
|
||||
|
||||
criterion = MultiboxLoss(config.priors, iou_threshold=0.5, neg_pos_ratio=3,
|
||||
center_variance=0.1, size_variance=0.2, device=DEVICE)
|
||||
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum,
|
||||
weight_decay=args.weight_decay)
|
||||
logging.info(f"Learning rate: {args.lr}, Base net learning rate: {base_net_lr}, "
|
||||
+ f"Extra Layers learning rate: {extra_layers_lr}.")
|
||||
|
||||
if args.scheduler == 'multi-step':
|
||||
logging.info("Uses MultiStepLR scheduler.")
|
||||
milestones = [int(v.strip()) for v in args.milestones.split(",")]
|
||||
scheduler = MultiStepLR(optimizer, milestones=milestones,
|
||||
gamma=0.1, last_epoch=last_epoch)
|
||||
elif args.scheduler == 'cosine':
|
||||
logging.info("Uses CosineAnnealingLR scheduler.")
|
||||
scheduler = CosineAnnealingLR(optimizer, args.t_max, last_epoch=last_epoch)
|
||||
else:
|
||||
logging.fatal(f"Unsupported Scheduler: {args.scheduler}.")
|
||||
parser.print_help(sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
logging.info(f"Start training from epoch {last_epoch + 1}.")
|
||||
|
||||
for epoch in range(last_epoch + 1, args.num_epochs):
|
||||
train(train_loader, net, criterion, optimizer,
|
||||
device=DEVICE, debug_steps=args.debug_steps, epoch=epoch)
|
||||
scheduler.step()
|
||||
|
||||
if epoch % args.validation_epochs == 0 or epoch == args.num_epochs - 1:
|
||||
val_loss, val_regression_loss, val_classification_loss = test(val_loader, net, criterion, DEVICE)
|
||||
logging.info(
|
||||
f"Epoch: {epoch}, " +
|
||||
f"Validation Loss: {val_loss:.4f}, " +
|
||||
f"Validation Regression Loss {val_regression_loss:.4f}, " +
|
||||
f"Validation Classification Loss: {val_classification_loss:.4f}"
|
||||
)
|
||||
model_path = os.path.join(args.checkpoint_folder, f"{args.net}-Epoch-{epoch}-Loss-{val_loss}.pth")
|
||||
net.save(model_path)
|
||||
logging.info(f"Saved model {model_path}")
|
||||
|
||||
logging.info("Task done, exiting program.")
|
219
src/4_eval_ssd.py
Normal file
219
src/4_eval_ssd.py
Normal file
@ -0,0 +1,219 @@
|
||||
import argparse
|
||||
import logging
|
||||
import pathlib
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from config import MODEL_PATH, VOC_PATH, MODEL_NAME
|
||||
from vision.datasets.open_images import OpenImagesDataset
|
||||
from vision.datasets.voc_dataset import VOCDataset
|
||||
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite, create_mobilenetv2_ssd_lite_predictor
|
||||
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
|
||||
from vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite, create_mobilenetv1_ssd_lite_predictor
|
||||
from vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite, create_squeezenet_ssd_lite_predictor
|
||||
from vision.ssd.vgg_ssd import create_vgg_ssd, create_vgg_ssd_predictor
|
||||
from vision.utils import box_utils, measurements
|
||||
from vision.utils import str2bool, Timer
|
||||
|
||||
parser = argparse.ArgumentParser(description="SSD Evaluation on VOC Dataset.")
|
||||
parser.add_argument('--net', default='mb1-ssd',
|
||||
help="The network architecture, it should be of mb1-ssd, mb1-ssd-lite, mb2-ssd-lite or vgg16-ssd.")
|
||||
parser.add_argument("--trained_model", type=str,
|
||||
default='/Users/licsber/datasets/工训赛/models/' + MODEL_NAME)
|
||||
|
||||
parser.add_argument("--dataset_type", default="voc", type=str,
|
||||
help='Specify dataset type. Currently support voc and open_images.')
|
||||
parser.add_argument("--dataset", type=str, help="The root directory of the VOC dataset or Open Images dataset.",
|
||||
default=str(VOC_PATH))
|
||||
parser.add_argument("--label_file", type=str, help="The label file path.", default=str(MODEL_PATH) + '/labels.txt')
|
||||
parser.add_argument("--use_cuda", type=str2bool, default=True)
|
||||
parser.add_argument("--use_2007_metric", type=str2bool, default=True)
|
||||
parser.add_argument("--nms_method", type=str, default="hard")
|
||||
parser.add_argument("--iou_threshold", type=float, default=0.5, help="The threshold of Intersection over Union.")
|
||||
parser.add_argument("--eval_dir", default="eval_results", type=str, help="The directory to store evaluation results.")
|
||||
parser.add_argument('--mb2_width_mult', default=1.0, type=float,
|
||||
help='Width Multiplifier for MobilenetV2')
|
||||
args = parser.parse_args()
|
||||
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu")
|
||||
|
||||
|
||||
def group_annotation_by_class(dataset):
|
||||
true_case_stat = {}
|
||||
all_gt_boxes = {}
|
||||
all_difficult_cases = {}
|
||||
for i in range(len(dataset)):
|
||||
image_id, annotation = dataset.get_annotation(i)
|
||||
gt_boxes, classes, is_difficult = annotation
|
||||
gt_boxes = torch.from_numpy(gt_boxes)
|
||||
for i, difficult in enumerate(is_difficult):
|
||||
class_index = int(classes[i])
|
||||
gt_box = gt_boxes[i]
|
||||
if not difficult:
|
||||
true_case_stat[class_index] = true_case_stat.get(class_index, 0) + 1
|
||||
|
||||
if class_index not in all_gt_boxes:
|
||||
all_gt_boxes[class_index] = {}
|
||||
if image_id not in all_gt_boxes[class_index]:
|
||||
all_gt_boxes[class_index][image_id] = []
|
||||
all_gt_boxes[class_index][image_id].append(gt_box)
|
||||
if class_index not in all_difficult_cases:
|
||||
all_difficult_cases[class_index] = {}
|
||||
if image_id not in all_difficult_cases[class_index]:
|
||||
all_difficult_cases[class_index][image_id] = []
|
||||
all_difficult_cases[class_index][image_id].append(difficult)
|
||||
|
||||
for class_index in all_gt_boxes:
|
||||
for image_id in all_gt_boxes[class_index]:
|
||||
all_gt_boxes[class_index][image_id] = torch.stack(all_gt_boxes[class_index][image_id])
|
||||
for class_index in all_difficult_cases:
|
||||
for image_id in all_difficult_cases[class_index]:
|
||||
all_gt_boxes[class_index][image_id] = torch.tensor(all_gt_boxes[class_index][image_id])
|
||||
return true_case_stat, all_gt_boxes, all_difficult_cases
|
||||
|
||||
|
||||
def compute_average_precision_per_class(num_true_cases, gt_boxes, difficult_cases,
|
||||
prediction_file, iou_threshold, use_2007_metric):
|
||||
with open(prediction_file) as f:
|
||||
image_ids = []
|
||||
boxes = []
|
||||
scores = []
|
||||
for line in f:
|
||||
t = line.rstrip().split("\t")
|
||||
image_ids.append(t[0])
|
||||
scores.append(float(t[1]))
|
||||
box = torch.tensor([float(v) for v in t[2:]]).unsqueeze(0)
|
||||
box -= 1.0 # convert to python format where indexes start from 0
|
||||
boxes.append(box)
|
||||
|
||||
scores = np.array(scores)
|
||||
sorted_indexes = np.argsort(-scores)
|
||||
boxes = [boxes[i] for i in sorted_indexes]
|
||||
image_ids = [image_ids[i] for i in sorted_indexes]
|
||||
true_positive = np.zeros(len(image_ids))
|
||||
false_positive = np.zeros(len(image_ids))
|
||||
matched = set()
|
||||
for i, image_id in enumerate(image_ids):
|
||||
box = boxes[i]
|
||||
if image_id not in gt_boxes:
|
||||
false_positive[i] = 1
|
||||
continue
|
||||
|
||||
gt_box = gt_boxes[image_id]
|
||||
ious = box_utils.iou_of(box, gt_box)
|
||||
max_iou = torch.max(ious).item()
|
||||
max_arg = torch.argmax(ious).item()
|
||||
if max_iou > iou_threshold:
|
||||
if difficult_cases[image_id][max_arg] == 0:
|
||||
if (image_id, max_arg) not in matched:
|
||||
true_positive[i] = 1
|
||||
matched.add((image_id, max_arg))
|
||||
else:
|
||||
false_positive[i] = 1
|
||||
else:
|
||||
false_positive[i] = 1
|
||||
|
||||
true_positive = true_positive.cumsum()
|
||||
false_positive = false_positive.cumsum()
|
||||
precision = true_positive / (true_positive + false_positive)
|
||||
recall = true_positive / num_true_cases
|
||||
if use_2007_metric:
|
||||
return measurements.compute_voc2007_average_precision(precision, recall)
|
||||
else:
|
||||
return measurements.compute_average_precision(precision, recall)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
eval_path = pathlib.Path(args.eval_dir)
|
||||
eval_path.mkdir(exist_ok=True)
|
||||
timer = Timer()
|
||||
class_names = [name.strip() for name in open(args.label_file).readlines()]
|
||||
|
||||
if args.dataset_type == "voc":
|
||||
dataset = VOCDataset(args.dataset, is_test=True)
|
||||
elif args.dataset_type == 'open_images':
|
||||
dataset = OpenImagesDataset(args.dataset, dataset_type="test")
|
||||
|
||||
true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(dataset)
|
||||
if args.net == 'vgg16-ssd':
|
||||
net = create_vgg_ssd(len(class_names), is_test=True)
|
||||
elif args.net == 'mb1-ssd':
|
||||
net = create_mobilenetv1_ssd(len(class_names), is_test=True)
|
||||
elif args.net == 'mb1-ssd-lite':
|
||||
net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True)
|
||||
elif args.net == 'sq-ssd-lite':
|
||||
net = create_squeezenet_ssd_lite(len(class_names), is_test=True)
|
||||
elif args.net == 'mb2-ssd-lite':
|
||||
net = create_mobilenetv2_ssd_lite(len(class_names), width_mult=args.mb2_width_mult, is_test=True)
|
||||
else:
|
||||
logging.fatal("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
|
||||
parser.print_help(sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
timer.start("Load Model")
|
||||
net.load(args.trained_model)
|
||||
net = net.to(DEVICE)
|
||||
print(f'It took {timer.end("Load Model")} seconds to load the model.')
|
||||
if args.net == 'vgg16-ssd':
|
||||
predictor = create_vgg_ssd_predictor(net, nms_method=args.nms_method, device=DEVICE)
|
||||
elif args.net == 'mb1-ssd':
|
||||
predictor = create_mobilenetv1_ssd_predictor(net, nms_method=args.nms_method, device=DEVICE)
|
||||
elif args.net == 'mb1-ssd-lite':
|
||||
predictor = create_mobilenetv1_ssd_lite_predictor(net, nms_method=args.nms_method, device=DEVICE)
|
||||
elif args.net == 'sq-ssd-lite':
|
||||
predictor = create_squeezenet_ssd_lite_predictor(net, nms_method=args.nms_method, device=DEVICE)
|
||||
elif args.net == 'mb2-ssd-lite':
|
||||
predictor = create_mobilenetv2_ssd_lite_predictor(net, nms_method=args.nms_method, device=DEVICE)
|
||||
else:
|
||||
logging.fatal("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
|
||||
parser.print_help(sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
results = []
|
||||
for i in range(len(dataset)):
|
||||
print("process image", i)
|
||||
timer.start("Load Image")
|
||||
image = dataset.get_image(i)
|
||||
print("Load Image: {:4f} seconds.".format(timer.end("Load Image")))
|
||||
timer.start("Predict")
|
||||
boxes, labels, probs = predictor.predict(image)
|
||||
print("Prediction: {:4f} seconds.".format(timer.end("Predict")))
|
||||
indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i
|
||||
results.append(torch.cat([
|
||||
indexes.reshape(-1, 1),
|
||||
labels.reshape(-1, 1).float(),
|
||||
probs.reshape(-1, 1),
|
||||
boxes + 1.0 # matlab's indexes start from 1
|
||||
], dim=1))
|
||||
results = torch.cat(results)
|
||||
for class_index, class_name in enumerate(class_names):
|
||||
if class_index == 0: continue # ignore background
|
||||
prediction_path = eval_path / f"det_test_{class_name}.txt"
|
||||
with open(prediction_path, "w") as f:
|
||||
sub = results[results[:, 1] == class_index, :]
|
||||
for i in range(sub.size(0)):
|
||||
prob_box = sub[i, 2:].numpy()
|
||||
image_id = dataset.ids[int(sub[i, 0])]
|
||||
print(
|
||||
image_id + "\t" + " ".join([str(v) for v in prob_box]).replace(" ", "\t"),
|
||||
file=f
|
||||
)
|
||||
aps = []
|
||||
print("\n\nAverage Precision Per-class:")
|
||||
for class_index, class_name in enumerate(class_names):
|
||||
if class_index == 0:
|
||||
continue
|
||||
prediction_path = eval_path / f"det_test_{class_name}.txt"
|
||||
ap = compute_average_precision_per_class(
|
||||
true_case_stat[class_index],
|
||||
all_gb_boxes[class_index],
|
||||
all_difficult_cases[class_index],
|
||||
prediction_path,
|
||||
args.iou_threshold,
|
||||
args.use_2007_metric
|
||||
)
|
||||
aps.append(ap)
|
||||
print(f"{class_name}: {ap}")
|
||||
|
||||
print(f"\nAverage Precision Across All Classes: {sum(aps) / len(aps)}")
|
42
src/5_video_test.py
Normal file
42
src/5_video_test.py
Normal file
@ -0,0 +1,42 @@
|
||||
import cv2
|
||||
|
||||
from config import MODEL_PATH, VIDEO_PATH, LABEL_PATH, MODEL_NAME
|
||||
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
|
||||
|
||||
train_model = MODEL_PATH / MODEL_NAME
|
||||
test_videos = VIDEO_PATH.glob('*.avi')
|
||||
|
||||
class_names = [name.strip() for name in LABEL_PATH.read_text().split()]
|
||||
net = create_mobilenetv1_ssd(len(class_names), is_test=True)
|
||||
net.load(train_model)
|
||||
predictor = create_mobilenetv1_ssd_predictor(net, nms_method='hard')
|
||||
|
||||
count = 0
|
||||
for video in test_videos:
|
||||
count += 1
|
||||
cap = cv2.VideoCapture(str(video))
|
||||
if count != 1:
|
||||
continue
|
||||
|
||||
while True:
|
||||
suc, bgr = cap.read()
|
||||
if not suc:
|
||||
break
|
||||
|
||||
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
|
||||
boxes, labels, probs = predictor.predict(rgb, 5, 0.4)
|
||||
for i in range(boxes.size(0)):
|
||||
box = boxes[i, :]
|
||||
if box[0] <= 0 or box[1] <= 0 or box[3] >= 240:
|
||||
continue
|
||||
|
||||
label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
|
||||
print(label)
|
||||
|
||||
cv2.rectangle(bgr, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (255, 255, 0), 4)
|
||||
cv2.putText(bgr, label, (int(box[0]) + 20, int(box[1]) + 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 255), 2)
|
||||
|
||||
cv2.imshow('bgr', bgr)
|
||||
cv2.waitKey(1)
|
||||
|
||||
break
|
107
src/6_onnx_export.py
Normal file
107
src/6_onnx_export.py
Normal file
@ -0,0 +1,107 @@
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch.onnx
|
||||
|
||||
from config import MODEL_PATH, MAC, MODEL_NAME
|
||||
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite
|
||||
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd
|
||||
from vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite
|
||||
from vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite
|
||||
from vision.ssd.vgg_ssd import create_vgg_ssd
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--net', default='ssd-mobilenet',
|
||||
help="The network architecture, it can be mb1-ssd (aka ssd-mobilenet), mb1-lite-ssd, mb2-ssd-lite or vgg16-ssd.")
|
||||
parser.add_argument('--input', type=str, default=str(MODEL_PATH / MODEL_NAME),
|
||||
help="path to input PyTorch model (.pth checkpoint)")
|
||||
parser.add_argument('--output', type=str, default='', help="desired path of converted ONNX model (default: <NET>.onnx)")
|
||||
parser.add_argument('--labels', type=str, default=str(MODEL_PATH) + '/labels.txt', help="name of the class labels file")
|
||||
parser.add_argument('--width', type=int, default=300, help="input width of the model to be exported (in pixels)")
|
||||
parser.add_argument('--height', type=int, default=300, help="input height of the model to be exported (in pixels)")
|
||||
parser.add_argument('--batch-size', type=int, default=1, help="batch size of the model to be exported (default=1)")
|
||||
parser.add_argument('--model-dir', type=str, default=str(MODEL_PATH),
|
||||
help="directory to look for the input PyTorch model in, and export the converted ONNX model to (if --output doesn't specify a directory)")
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
# set the device
|
||||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||
print('running on device ' + str(device))
|
||||
|
||||
# format input model paths
|
||||
if args.model_dir:
|
||||
args.model_dir = os.path.expanduser(args.model_dir)
|
||||
|
||||
# find the checkpoint with the lowest loss
|
||||
if not args.input:
|
||||
best_loss = 10000
|
||||
for file in os.listdir(args.model_dir):
|
||||
if not file.endswith(".pth"):
|
||||
continue
|
||||
try:
|
||||
loss = float(file[file.rfind("-") + 1:len(file) - 4])
|
||||
if loss < best_loss:
|
||||
best_loss = loss
|
||||
args.input = os.path.join(args.model_dir, file)
|
||||
except ValueError:
|
||||
continue
|
||||
print('found best checkpoint with loss {:f} ({:s})'.format(best_loss, args.input))
|
||||
|
||||
# append the model dir (if needed)
|
||||
if not os.path.isfile(args.input):
|
||||
args.input = os.path.join(args.model_dir, args.input)
|
||||
|
||||
if not os.path.isfile(args.labels):
|
||||
args.labels = os.path.join(args.model_dir, args.labels)
|
||||
|
||||
# determine the number of classes
|
||||
class_names = [name.strip() for name in open(args.labels).readlines()]
|
||||
num_classes = len(class_names)
|
||||
|
||||
# construct the network architecture
|
||||
print('creating network: ' + args.net)
|
||||
print('num classes: ' + str(num_classes))
|
||||
|
||||
if args.net == 'vgg16-ssd':
|
||||
net = create_vgg_ssd(len(class_names), is_test=True)
|
||||
elif args.net == 'mb1-ssd' or args.net == 'ssd-mobilenet':
|
||||
net = create_mobilenetv1_ssd(len(class_names), is_test=True)
|
||||
elif args.net == 'mb1-ssd-lite':
|
||||
net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True)
|
||||
elif args.net == 'mb2-ssd-lite':
|
||||
net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
|
||||
elif args.net == 'sq-ssd-lite':
|
||||
net = create_squeezenet_ssd_lite(len(class_names), is_test=True)
|
||||
else:
|
||||
print("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
|
||||
sys.exit(1)
|
||||
|
||||
# load the model checkpoint
|
||||
print('loading checkpoint: ' + args.input)
|
||||
|
||||
net.load(args.input)
|
||||
net.to(device)
|
||||
net.eval()
|
||||
|
||||
if MAC:
|
||||
dummy_input = torch.randn(args.batch_size, 3, args.height, args.width)
|
||||
else:
|
||||
dummy_input = torch.randn(args.batch_size, 3, args.height, args.width).cuda()
|
||||
|
||||
# format output model path
|
||||
if not args.output:
|
||||
args.output = args.net + '.onnx'
|
||||
|
||||
if args.model_dir and args.output.find('/') == -1 and args.output.find('\\') == -1:
|
||||
args.output = os.path.join(args.model_dir, args.output)
|
||||
|
||||
input_names = ['input_0']
|
||||
output_names = ['scores', 'boxes']
|
||||
|
||||
print('exporting model to ONNX...')
|
||||
torch.onnx.export(net, dummy_input, args.output, verbose=True, input_names=input_names, output_names=output_names)
|
||||
print('model exported to: {:s}'.format(args.output))
|
||||
print('task done, exiting program')
|
9
src/7_onnx_test.py
Normal file
9
src/7_onnx_test.py
Normal file
@ -0,0 +1,9 @@
|
||||
import onnx
|
||||
|
||||
from config import MODEL_PATH
|
||||
|
||||
model_path = MODEL_PATH / 'ssd-mobilenet.onnx'
|
||||
model = onnx.load(str(model_path))
|
||||
|
||||
print(onnx.checker.check_model(model))
|
||||
print(onnx.helper.printable_graph(model.graph))
|
12
src/8_merge_voc.py
Normal file
12
src/8_merge_voc.py
Normal file
@ -0,0 +1,12 @@
|
||||
from config import IMG_PATH
|
||||
|
||||
all_img = list(IMG_PATH.glob('*.jpg'))
|
||||
all_img.sort()
|
||||
|
||||
count = 0
|
||||
for img in all_img:
|
||||
xml = IMG_PATH / img.name.replace('jpg', 'xml')
|
||||
new_file_basename = f"{count:05d}"
|
||||
xml.rename(xml.parent / (new_file_basename + '.xml'))
|
||||
img.rename(img.parent / (new_file_basename + '.jpg'))
|
||||
count += 1
|
27
src/config.py
Normal file
27
src/config.py
Normal file
@ -0,0 +1,27 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from licsber.dl import DATASETS_ROOT
|
||||
|
||||
CLASSES = (
|
||||
'circle',
|
||||
'square',
|
||||
'huan',
|
||||
)
|
||||
|
||||
MODEL_NAME = 'mb1-ssd-Epoch-29-Loss-1.1743878581944633.pth'
|
||||
MAC = sys.platform == 'darwin'
|
||||
|
||||
VIDEO_PATH = DATASETS_ROOT / '工训赛/video'
|
||||
VIDEO_PATH = Path(VIDEO_PATH)
|
||||
|
||||
IMG_PATH = VIDEO_PATH.parent / 'labeled'
|
||||
IMG_PATH.mkdir(exist_ok=True)
|
||||
|
||||
MODEL_PATH = VIDEO_PATH.parent / 'models'
|
||||
MODEL_PATH.mkdir(exist_ok=True)
|
||||
|
||||
VOC_PATH = VIDEO_PATH.parent / 'voc'
|
||||
VOC_PATH.mkdir(exist_ok=True)
|
||||
|
||||
LABEL_PATH = MODEL_PATH / 'labels.txt'
|
25
src/main.py
Normal file
25
src/main.py
Normal file
@ -0,0 +1,25 @@
|
||||
# noinspection PyUnresolvedReferences
|
||||
import jetson.inference
|
||||
import jetson.utils
|
||||
|
||||
net = jetson.inference.detectNet(argv=[
|
||||
'--model=../ssd-mobilenet.onnx',
|
||||
'--labels=../labels.txt',
|
||||
'--input-blob=input_0',
|
||||
'--output-cvg=scores',
|
||||
'--output-bbox=boxes',
|
||||
],
|
||||
threshold=0.5)
|
||||
|
||||
input = jetson.utils.videoSource('/dev/video0')
|
||||
|
||||
count = 0
|
||||
while True:
|
||||
count += 1
|
||||
img = input.Capture()
|
||||
detections = net.Detect(img, overlay='box,labels,conf')
|
||||
print("detected {:d} objects in image".format(len(detections)))
|
||||
for detection in detections:
|
||||
print(detection)
|
||||
if count >= 100:
|
||||
break
|
0
src/vision/__init__.py
Normal file
0
src/vision/__init__.py
Normal file
0
src/vision/datasets/__init__.py
Normal file
0
src/vision/datasets/__init__.py
Normal file
31
src/vision/datasets/collation.py
Normal file
31
src/vision/datasets/collation.py
Normal file
@ -0,0 +1,31 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def object_detection_collate(batch):
|
||||
images = []
|
||||
gt_boxes = []
|
||||
gt_labels = []
|
||||
image_type = type(batch[0][0])
|
||||
box_type = type(batch[0][1])
|
||||
label_type = type(batch[0][2])
|
||||
for image, boxes, labels in batch:
|
||||
if image_type is np.ndarray:
|
||||
images.append(torch.from_numpy(image))
|
||||
elif image_type is torch.Tensor:
|
||||
images.append(image)
|
||||
else:
|
||||
raise TypeError(f"Image should be tensor or np.ndarray, but got {image_type}.")
|
||||
if box_type is np.ndarray:
|
||||
gt_boxes.append(torch.from_numpy(boxes))
|
||||
elif box_type is torch.Tensor:
|
||||
gt_boxes.append(boxes)
|
||||
else:
|
||||
raise TypeError(f"Boxes should be tensor or np.ndarray, but got {box_type}.")
|
||||
if label_type is np.ndarray:
|
||||
gt_labels.append(torch.from_numpy(labels))
|
||||
elif label_type is torch.Tensor:
|
||||
gt_labels.append(labels)
|
||||
else:
|
||||
raise TypeError(f"Labels should be tensor or np.ndarray, but got {label_type}.")
|
||||
return torch.stack(images), gt_boxes, gt_labels
|
128
src/vision/datasets/generate_vocdata.py
Normal file
128
src/vision/datasets/generate_vocdata.py
Normal file
@ -0,0 +1,128 @@
|
||||
import os
|
||||
import sys
|
||||
import xml.etree.ElementTree as ET
|
||||
from random import random
|
||||
|
||||
|
||||
def main(filename):
|
||||
# ratio to divide up the images
|
||||
train = 0.7
|
||||
val = 0.2
|
||||
test = 0.1
|
||||
if (train + test + val) != 1.0:
|
||||
print("probabilities must equal 1")
|
||||
exit()
|
||||
|
||||
# get the labels
|
||||
labels = []
|
||||
imgnames = []
|
||||
annotations = {}
|
||||
|
||||
with open(filename, 'r') as labelfile:
|
||||
label_string = ""
|
||||
for line in labelfile:
|
||||
label_string += line.rstrip()
|
||||
|
||||
labels = label_string.split(',')
|
||||
labels = [elem.replace(" ", "") for elem in labels]
|
||||
|
||||
# get image names
|
||||
for filename in os.listdir("./JPEGImages"):
|
||||
if filename.endswith(".jpg"):
|
||||
img = filename.rstrip('.jpg')
|
||||
imgnames.append(img)
|
||||
|
||||
print("Labels:", labels, "imgcnt:", len(imgnames))
|
||||
|
||||
# initialise annotation list
|
||||
for label in labels:
|
||||
annotations[label] = []
|
||||
|
||||
# Scan the annotations for the labels
|
||||
for img in imgnames:
|
||||
annote = "Annotations/" + img + '.xml'
|
||||
if os.path.isfile(annote):
|
||||
tree = ET.parse(annote)
|
||||
root = tree.getroot()
|
||||
annote_labels = []
|
||||
for labelname in root.findall('*/name'):
|
||||
labelname = labelname.text
|
||||
annote_labels.append(labelname)
|
||||
if labelname in labels:
|
||||
annotations[labelname].append(img)
|
||||
annotations[img] = annote_labels
|
||||
else:
|
||||
print("Missing annotation for ", annote)
|
||||
exit()
|
||||
|
||||
# divvy up the images to the different sets
|
||||
sampler = imgnames.copy()
|
||||
train_list = []
|
||||
val_list = []
|
||||
test_list = []
|
||||
|
||||
while len(sampler) > 0:
|
||||
dice = random()
|
||||
elem = sampler.pop()
|
||||
|
||||
if dice <= test:
|
||||
test_list.append(elem)
|
||||
elif dice <= (test + val):
|
||||
val_list.append(elem)
|
||||
else:
|
||||
train_list.append(elem)
|
||||
|
||||
print("Training set:", len(train_list), "validation set:", len(val_list), "test set:", len(test_list))
|
||||
|
||||
# create the dataset files
|
||||
create_folder("./ImageSets/Main/")
|
||||
with open("./ImageSets/Main/train.txt", 'w') as outfile:
|
||||
for name in train_list:
|
||||
outfile.write(name + "\n")
|
||||
with open("./ImageSets/Main/val.txt", 'w') as outfile:
|
||||
for name in val_list:
|
||||
outfile.write(name + "\n")
|
||||
with open("./ImageSets/Main/trainval.txt", 'w') as outfile:
|
||||
for name in train_list:
|
||||
outfile.write(name + "\n")
|
||||
for name in val_list:
|
||||
outfile.write(name + "\n")
|
||||
|
||||
with open("./ImageSets/Main/test.txt", 'w') as outfile:
|
||||
for name in test_list:
|
||||
outfile.write(name + "\n")
|
||||
|
||||
# create the individiual files for each label
|
||||
for label in labels:
|
||||
with open("./ImageSets/Main/" + label + "_train.txt", 'w') as outfile:
|
||||
for name in train_list:
|
||||
if label in annotations[name]:
|
||||
outfile.write(name + " 1\n")
|
||||
else:
|
||||
outfile.write(name + " -1\n")
|
||||
with open("./ImageSets/Main/" + label + "_val.txt", 'w') as outfile:
|
||||
for name in val_list:
|
||||
if label in annotations[name]:
|
||||
outfile.write(name + " 1\n")
|
||||
else:
|
||||
outfile.write(name + " -1\n")
|
||||
with open("./ImageSets/Main/" + label + "_test.txt", 'w') as outfile:
|
||||
for name in test_list:
|
||||
if label in annotations[name]:
|
||||
outfile.write(name + " 1\n")
|
||||
else:
|
||||
outfile.write(name + " -1\n")
|
||||
|
||||
|
||||
def create_folder(foldername):
|
||||
if os.path.exists(foldername):
|
||||
print('folder already exists:', foldername)
|
||||
else:
|
||||
os.makedirs(foldername)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
print("usage: python generate_vocdata.py <labelfile>")
|
||||
exit()
|
||||
main(sys.argv[1])
|
130
src/vision/datasets/open_images.py
Normal file
130
src/vision/datasets/open_images.py
Normal file
@ -0,0 +1,130 @@
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class OpenImagesDataset:
|
||||
|
||||
def __init__(self, root,
|
||||
transform=None, target_transform=None,
|
||||
dataset_type="train", balance_data=False):
|
||||
self.root = pathlib.Path(root)
|
||||
self.transform = transform
|
||||
self.target_transform = target_transform
|
||||
self.dataset_type = dataset_type.lower()
|
||||
|
||||
self.data, self.class_names, self.class_dict = self._read_data()
|
||||
self.balance_data = balance_data
|
||||
self.min_image_num = -1
|
||||
if self.balance_data:
|
||||
self.data = self._balance_data()
|
||||
self.ids = [info['image_id'] for info in self.data]
|
||||
|
||||
self.class_stat = None
|
||||
|
||||
def _getitem(self, index):
|
||||
image_info = self.data[index]
|
||||
image = self._read_image(image_info['image_id'])
|
||||
# duplicate boxes to prevent corruption of dataset
|
||||
boxes = copy.copy(image_info['boxes'])
|
||||
boxes[:, 0] *= image.shape[1]
|
||||
boxes[:, 1] *= image.shape[0]
|
||||
boxes[:, 2] *= image.shape[1]
|
||||
boxes[:, 3] *= image.shape[0]
|
||||
# duplicate labels to prevent corruption of dataset
|
||||
labels = copy.copy(image_info['labels'])
|
||||
if self.transform:
|
||||
image, boxes, labels = self.transform(image, boxes, labels)
|
||||
if self.target_transform:
|
||||
boxes, labels = self.target_transform(boxes, labels)
|
||||
return image_info['image_id'], image, boxes, labels
|
||||
|
||||
def __getitem__(self, index):
|
||||
_, image, boxes, labels = self._getitem(index)
|
||||
return image, boxes, labels
|
||||
|
||||
def get_annotation(self, index):
|
||||
"""To conform the eval_ssd implementation that is based on the VOC dataset."""
|
||||
image_id, image, boxes, labels = self._getitem(index)
|
||||
is_difficult = np.zeros(boxes.shape[0], dtype=np.uint8)
|
||||
return image_id, (boxes, labels, is_difficult)
|
||||
|
||||
def get_image(self, index):
|
||||
image_info = self.data[index]
|
||||
image = self._read_image(image_info['image_id'])
|
||||
if self.transform:
|
||||
image, _ = self.transform(image)
|
||||
return image
|
||||
|
||||
def _read_data(self):
|
||||
annotation_file = f"{self.root}/sub-{self.dataset_type}-annotations-bbox.csv"
|
||||
logging.info(f'loading annotations from: {annotation_file}')
|
||||
annotations = pd.read_csv(annotation_file)
|
||||
logging.info(f'annotations loaded from: {annotation_file}')
|
||||
class_names = ['BACKGROUND'] + sorted(list(annotations['ClassName'].unique()))
|
||||
class_dict = {class_name: i for i, class_name in enumerate(class_names)}
|
||||
data = []
|
||||
for image_id, group in annotations.groupby("ImageID"):
|
||||
img_path = os.path.join(self.root, self.dataset_type, image_id + '.jpg')
|
||||
if os.path.isfile(img_path) is False:
|
||||
logging.error(f'missing ImageID {image_id}.jpg - dropping from annotations')
|
||||
continue
|
||||
boxes = group.loc[:, ["XMin", "YMin", "XMax", "YMax"]].values.astype(np.float32)
|
||||
# make labels 64 bits to satisfy the cross_entropy function
|
||||
labels = np.array([class_dict[name] for name in group["ClassName"]], dtype='int64')
|
||||
# print('found image {:s} ({:d})'.format(img_path, len(data)))
|
||||
data.append({
|
||||
'image_id': image_id,
|
||||
'boxes': boxes,
|
||||
'labels': labels
|
||||
})
|
||||
print('num images: {:d}'.format(len(data)))
|
||||
return data, class_names, class_dict
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __repr__(self):
|
||||
if self.class_stat is None:
|
||||
self.class_stat = {name: 0 for name in self.class_names[1:]}
|
||||
for example in self.data:
|
||||
for class_index in example['labels']:
|
||||
class_name = self.class_names[class_index]
|
||||
self.class_stat[class_name] += 1
|
||||
content = ["Dataset Summary:"
|
||||
f"Number of Images: {len(self.data)}",
|
||||
f"Minimum Number of Images for a Class: {self.min_image_num}",
|
||||
"Label Distribution:"]
|
||||
for class_name, num in self.class_stat.items():
|
||||
content.append(f"\t{class_name}: {num}")
|
||||
return "\n".join(content)
|
||||
|
||||
def _read_image(self, image_id):
|
||||
image_file = self.root / self.dataset_type / f"{image_id}.jpg"
|
||||
image = cv2.imread(str(image_file))
|
||||
if image.shape[2] == 1:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
||||
else:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
return image
|
||||
|
||||
def _balance_data(self):
|
||||
logging.info('balancing data')
|
||||
label_image_indexes = [set() for _ in range(len(self.class_names))]
|
||||
for i, image in enumerate(self.data):
|
||||
for label_id in image['labels']:
|
||||
label_image_indexes[label_id].add(i)
|
||||
label_stat = [len(s) for s in label_image_indexes]
|
||||
self.min_image_num = min(label_stat[1:])
|
||||
sample_image_indexes = set()
|
||||
for image_indexes in label_image_indexes[1:]:
|
||||
image_indexes = np.array(list(image_indexes))
|
||||
sub = np.random.permutation(image_indexes)[:self.min_image_num]
|
||||
sample_image_indexes.update(sub)
|
||||
sample_data = [self.data[i] for i in sample_image_indexes]
|
||||
return sample_data
|
187
src/vision/datasets/voc_dataset.py
Normal file
187
src/vision/datasets/voc_dataset.py
Normal file
@ -0,0 +1,187 @@
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class VOCDataset:
|
||||
|
||||
def __init__(self, root, transform=None, target_transform=None, is_test=False, keep_difficult=True,
|
||||
label_file=None):
|
||||
"""Dataset for VOC data.
|
||||
Args:
|
||||
root: the root of the VOC2007 or VOC2012 dataset, the directory contains the following sub-directories:
|
||||
Annotations, ImageSets, JPEGImages, SegmentationClass, SegmentationObject.
|
||||
"""
|
||||
self.root = pathlib.Path(root)
|
||||
self.transform = transform
|
||||
self.target_transform = target_transform
|
||||
|
||||
# determine the image set file to use
|
||||
if is_test:
|
||||
image_sets_file = self.root / "ImageSets/Main/test.txt"
|
||||
else:
|
||||
image_sets_file = self.root / "ImageSets/Main/trainval.txt"
|
||||
|
||||
if not os.path.isfile(image_sets_file):
|
||||
image_sets_default = self.root / "ImageSets/Main/default.txt" # CVAT only saves default.txt
|
||||
|
||||
if os.path.isfile(image_sets_default):
|
||||
image_sets_file = image_sets_default
|
||||
else:
|
||||
raise IOError("missing ImageSet file {:s}".format(image_sets_file))
|
||||
|
||||
# read the image set ID's
|
||||
self.ids = self._read_image_ids(image_sets_file)
|
||||
self.keep_difficult = keep_difficult
|
||||
|
||||
# if the labels file exists, read in the class names
|
||||
label_file_name = self.root / "labels.txt"
|
||||
|
||||
if os.path.isfile(label_file_name):
|
||||
classes = []
|
||||
|
||||
# classes should be a line-separated list
|
||||
with open(label_file_name, 'r') as infile:
|
||||
for line in infile:
|
||||
classes.append(line.rstrip())
|
||||
|
||||
# prepend BACKGROUND as first class
|
||||
classes.insert(0, 'BACKGROUND')
|
||||
# classes = [ elem.replace(" ", "") for elem in classes]
|
||||
self.class_names = tuple(classes)
|
||||
logging.info("VOC Labels read from file: " + str(self.class_names))
|
||||
|
||||
else:
|
||||
logging.info("No labels file, using default VOC classes.")
|
||||
self.class_names = ('BACKGROUND',
|
||||
'aeroplane', 'bicycle', 'bird', 'boat',
|
||||
'bottle', 'bus', 'car', 'cat', 'chair',
|
||||
'cow', 'diningtable', 'dog', 'horse',
|
||||
'motorbike', 'person', 'pottedplant',
|
||||
'sheep', 'sofa', 'train', 'tvmonitor')
|
||||
|
||||
self.class_dict = {class_name: i for i, class_name in enumerate(self.class_names)}
|
||||
|
||||
def __getitem__(self, index):
|
||||
image_id = self.ids[index]
|
||||
boxes, labels, is_difficult = self._get_annotation(image_id)
|
||||
|
||||
if not self.keep_difficult:
|
||||
boxes = boxes[is_difficult == 0]
|
||||
labels = labels[is_difficult == 0]
|
||||
|
||||
# print('__getitem__ image_id=' + str(image_id) + ' \nboxes=' + str(boxes) + ' \nlabels=' + str(labels))
|
||||
|
||||
image = self._read_image(image_id)
|
||||
|
||||
if self.transform:
|
||||
image, boxes, labels = self.transform(image, boxes, labels)
|
||||
if self.target_transform:
|
||||
boxes, labels = self.target_transform(boxes, labels)
|
||||
|
||||
return image, boxes, labels
|
||||
|
||||
def get_image(self, index):
|
||||
image_id = self.ids[index]
|
||||
image = self._read_image(image_id)
|
||||
if self.transform:
|
||||
image, _ = self.transform(image)
|
||||
return image
|
||||
|
||||
def get_annotation(self, index):
|
||||
image_id = self.ids[index]
|
||||
return image_id, self._get_annotation(image_id)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids)
|
||||
|
||||
def _read_image_ids(self, image_sets_file):
|
||||
ids = []
|
||||
with open(image_sets_file) as f:
|
||||
for line in f:
|
||||
image_id = line.rstrip()
|
||||
|
||||
if len(image_id) <= 0:
|
||||
print('warning - found empty line in {:s}, skipping line'.format(image_sets_file))
|
||||
continue
|
||||
|
||||
if self._get_num_annotations(image_id) > 0:
|
||||
if self._find_image(image_id) is not None:
|
||||
ids.append(line.rstrip())
|
||||
else:
|
||||
print('warning - could not find image {:s} - ignoring from dataset'.format(image_id))
|
||||
else:
|
||||
print('warning - image {:s} has no box/labels annotations, ignoring from dataset'.format(image_id))
|
||||
|
||||
return ids
|
||||
|
||||
def _get_num_annotations(self, image_id):
|
||||
annotation_file = self.root / f"Annotations/{image_id}.xml"
|
||||
objects = ET.parse(annotation_file).findall("object")
|
||||
return len(objects)
|
||||
|
||||
def _get_annotation(self, image_id):
|
||||
annotation_file = self.root / f"Annotations/{image_id}.xml"
|
||||
objects = ET.parse(annotation_file).findall("object")
|
||||
boxes = []
|
||||
labels = []
|
||||
is_difficult = []
|
||||
for object in objects:
|
||||
class_name = object.find('name').text.strip() # .lower().strip()
|
||||
# we're only concerned with clases in our list
|
||||
if class_name in self.class_dict:
|
||||
bbox = object.find('bndbox')
|
||||
|
||||
# VOC dataset format follows Matlab, in which indexes start from 0
|
||||
x1 = float(bbox.find('xmin').text) - 1
|
||||
y1 = float(bbox.find('ymin').text) - 1
|
||||
x2 = float(bbox.find('xmax').text) - 1
|
||||
y2 = float(bbox.find('ymax').text) - 1
|
||||
boxes.append([x1, y1, x2, y2])
|
||||
|
||||
labels.append(self.class_dict[class_name])
|
||||
|
||||
# retrieve <difficult> element
|
||||
is_difficult_obj = object.find('difficult')
|
||||
is_difficult_str = '0'
|
||||
|
||||
if is_difficult_obj is not None:
|
||||
is_difficult_str = object.find('difficult').text
|
||||
|
||||
is_difficult.append(int(is_difficult_str) if is_difficult_str else 0)
|
||||
else:
|
||||
print("warning - image {:s} has object with unknown class '{:s}'".format(image_id, class_name))
|
||||
|
||||
return (np.array(boxes, dtype=np.float32),
|
||||
np.array(labels, dtype=np.int64),
|
||||
np.array(is_difficult, dtype=np.uint8))
|
||||
|
||||
def _find_image(self, image_id):
|
||||
img_extensions = (
|
||||
'.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.bmp', '.BMP', '.tif', '.TIF', '.tiff', '.TIFF')
|
||||
|
||||
for ext in img_extensions:
|
||||
image_file = os.path.join(self.root, "JPEGImages/{:s}{:s}".format(image_id, ext))
|
||||
|
||||
if os.path.exists(image_file):
|
||||
return image_file
|
||||
|
||||
return None
|
||||
|
||||
def _read_image(self, image_id):
|
||||
image_file = self._find_image(image_id)
|
||||
|
||||
if image_file is None:
|
||||
raise IOError('failed to load ' + image_file)
|
||||
|
||||
image = cv2.imread(str(image_file))
|
||||
|
||||
if image is None or image.size == 0:
|
||||
raise IOError('failed to load ' + str(image_file))
|
||||
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
return image
|
0
src/vision/nn/__init__.py
Normal file
0
src/vision/nn/__init__.py
Normal file
60
src/vision/nn/alexnet.py
Normal file
60
src/vision/nn/alexnet.py
Normal file
@ -0,0 +1,60 @@
|
||||
import torch.nn as nn
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
# copied from torchvision (https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py).
|
||||
# The forward function is modified for model pruning.
|
||||
|
||||
__all__ = ['AlexNet', 'alexnet']
|
||||
|
||||
model_urls = {
|
||||
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
|
||||
}
|
||||
|
||||
|
||||
class AlexNet(nn.Module):
|
||||
|
||||
def __init__(self, num_classes=1000):
|
||||
super(AlexNet, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(),
|
||||
nn.Linear(256 * 6 * 6, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Dropout(),
|
||||
nn.Linear(4096, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(4096, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
def alexnet(pretrained=False, **kwargs):
|
||||
r"""AlexNet model architecture from the
|
||||
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = AlexNet(**kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['alexnet']))
|
||||
return model
|
52
src/vision/nn/mobilenet.py
Normal file
52
src/vision/nn/mobilenet.py
Normal file
@ -0,0 +1,52 @@
|
||||
# borrowed from "https://github.com/marvis/pytorch-mobilenet"
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class MobileNetV1(nn.Module):
|
||||
def __init__(self, num_classes=1024):
|
||||
super(MobileNetV1, self).__init__()
|
||||
|
||||
def conv_bn(inp, oup, stride):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
nn.ReLU(inplace=True)
|
||||
)
|
||||
|
||||
def conv_dw(inp, oup, stride):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
|
||||
nn.BatchNorm2d(inp),
|
||||
nn.ReLU(inplace=True),
|
||||
|
||||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
self.model = nn.Sequential(
|
||||
conv_bn(3, 32, 2),
|
||||
conv_dw(32, 64, 1),
|
||||
conv_dw(64, 128, 2),
|
||||
conv_dw(128, 128, 1),
|
||||
conv_dw(128, 256, 2),
|
||||
conv_dw(256, 256, 1),
|
||||
conv_dw(256, 512, 2),
|
||||
conv_dw(512, 512, 1),
|
||||
conv_dw(512, 512, 1),
|
||||
conv_dw(512, 512, 1),
|
||||
conv_dw(512, 512, 1),
|
||||
conv_dw(512, 512, 1),
|
||||
conv_dw(512, 1024, 2),
|
||||
conv_dw(1024, 1024, 1),
|
||||
)
|
||||
self.fc = nn.Linear(1024, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.model(x)
|
||||
x = F.avg_pool2d(x, 7)
|
||||
x = x.view(-1, 1024)
|
||||
x = self.fc(x)
|
||||
return x
|
175
src/vision/nn/mobilenet_v2.py
Normal file
175
src/vision/nn/mobilenet_v2.py
Normal file
@ -0,0 +1,175 @@
|
||||
import math
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# Modified from https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/MobileNetV2.py.
|
||||
# In this version, Relu6 is replaced with Relu to make it ONNX compatible.
|
||||
# BatchNorm Layer is optional to make it easy do batch norm confusion.
|
||||
|
||||
|
||||
def conv_bn(inp, oup, stride, use_batch_norm=True, onnx_compatible=False):
|
||||
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
||||
|
||||
if use_batch_norm:
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
ReLU(inplace=True)
|
||||
)
|
||||
else:
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
|
||||
ReLU(inplace=True)
|
||||
)
|
||||
|
||||
|
||||
def conv_1x1_bn(inp, oup, use_batch_norm=True, onnx_compatible=False):
|
||||
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
||||
if use_batch_norm:
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
ReLU(inplace=True)
|
||||
)
|
||||
else:
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||||
ReLU(inplace=True)
|
||||
)
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio, use_batch_norm=True, onnx_compatible=False):
|
||||
super(InvertedResidual, self).__init__()
|
||||
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
||||
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = round(inp * expand_ratio)
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
if expand_ratio == 1:
|
||||
if use_batch_norm:
|
||||
self.conv = nn.Sequential(
|
||||
# dw
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
||||
nn.BatchNorm2d(hidden_dim),
|
||||
ReLU(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
)
|
||||
else:
|
||||
self.conv = nn.Sequential(
|
||||
# dw
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
||||
ReLU(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
)
|
||||
else:
|
||||
if use_batch_norm:
|
||||
self.conv = nn.Sequential(
|
||||
# pw
|
||||
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(hidden_dim),
|
||||
ReLU(inplace=True),
|
||||
# dw
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
||||
nn.BatchNorm2d(hidden_dim),
|
||||
ReLU(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
)
|
||||
else:
|
||||
self.conv = nn.Sequential(
|
||||
# pw
|
||||
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
||||
ReLU(inplace=True),
|
||||
# dw
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
|
||||
ReLU(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(self, n_class=1000, input_size=224, width_mult=1., dropout_ratio=0.2,
|
||||
use_batch_norm=True, onnx_compatible=False):
|
||||
super(MobileNetV2, self).__init__()
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
interverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
assert input_size % 32 == 0
|
||||
input_channel = int(input_channel * width_mult)
|
||||
self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
|
||||
self.features = [conv_bn(3, input_channel, 2, onnx_compatible=onnx_compatible)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in interverted_residual_setting:
|
||||
output_channel = int(c * width_mult)
|
||||
for i in range(n):
|
||||
if i == 0:
|
||||
self.features.append(block(input_channel, output_channel, s,
|
||||
expand_ratio=t, use_batch_norm=use_batch_norm,
|
||||
onnx_compatible=onnx_compatible))
|
||||
else:
|
||||
self.features.append(block(input_channel, output_channel, 1,
|
||||
expand_ratio=t, use_batch_norm=use_batch_norm,
|
||||
onnx_compatible=onnx_compatible))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
self.features.append(conv_1x1_bn(input_channel, self.last_channel,
|
||||
use_batch_norm=use_batch_norm, onnx_compatible=onnx_compatible))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*self.features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout_ratio),
|
||||
nn.Linear(self.last_channel, n_class),
|
||||
)
|
||||
|
||||
self._initialize_weights()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = x.mean(3).mean(2)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
def _initialize_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
if m.bias is not None:
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
elif isinstance(m, nn.Linear):
|
||||
n = m.weight.size(1)
|
||||
m.weight.data.normal_(0, 0.01)
|
||||
m.bias.data.zero_()
|
46
src/vision/nn/multibox_loss.py
Normal file
46
src/vision/nn/multibox_loss.py
Normal file
@ -0,0 +1,46 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..utils import box_utils
|
||||
|
||||
|
||||
class MultiboxLoss(nn.Module):
|
||||
def __init__(self, priors, iou_threshold, neg_pos_ratio,
|
||||
center_variance, size_variance, device):
|
||||
"""Implement SSD Multibox Loss.
|
||||
|
||||
Basically, Multibox loss combines classification loss
|
||||
and Smooth L1 regression loss.
|
||||
"""
|
||||
super(MultiboxLoss, self).__init__()
|
||||
self.iou_threshold = iou_threshold
|
||||
self.neg_pos_ratio = neg_pos_ratio
|
||||
self.center_variance = center_variance
|
||||
self.size_variance = size_variance
|
||||
self.priors = priors
|
||||
self.priors.to(device)
|
||||
|
||||
def forward(self, confidence, predicted_locations, labels, gt_locations):
|
||||
"""Compute classification loss and smooth l1 loss.
|
||||
|
||||
Args:
|
||||
confidence (batch_size, num_priors, num_classes): class predictions.
|
||||
locations (batch_size, num_priors, 4): predicted locations.
|
||||
labels (batch_size, num_priors): real labels of all the priors.
|
||||
boxes (batch_size, num_priors, 4): real boxes corresponding all the priors.
|
||||
"""
|
||||
num_classes = confidence.size(2)
|
||||
with torch.no_grad():
|
||||
# derived from cross_entropy=sum(log(p))
|
||||
loss = -F.log_softmax(confidence, dim=2)[:, :, 0]
|
||||
mask = box_utils.hard_negative_mining(loss, labels, self.neg_pos_ratio)
|
||||
|
||||
confidence = confidence[mask, :]
|
||||
classification_loss = F.cross_entropy(confidence.reshape(-1, num_classes), labels[mask], size_average=False)
|
||||
pos_mask = labels > 0
|
||||
predicted_locations = predicted_locations[pos_mask, :].reshape(-1, 4)
|
||||
gt_locations = gt_locations[pos_mask, :].reshape(-1, 4)
|
||||
smooth_l1_loss = F.smooth_l1_loss(predicted_locations, gt_locations, size_average=False)
|
||||
num_pos = gt_locations.size(0)
|
||||
return smooth_l1_loss / num_pos, classification_loss / num_pos
|
19
src/vision/nn/scaled_l2_norm.py
Normal file
19
src/vision/nn/scaled_l2_norm.py
Normal file
@ -0,0 +1,19 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class ScaledL2Norm(nn.Module):
|
||||
def __init__(self, in_channels, initial_scale):
|
||||
super(ScaledL2Norm, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.scale = nn.Parameter(torch.Tensor(in_channels))
|
||||
self.initial_scale = initial_scale
|
||||
self.reset_parameters()
|
||||
|
||||
def forward(self, x):
|
||||
return (F.normalize(x, p=2, dim=1)
|
||||
* self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3))
|
||||
|
||||
def reset_parameters(self):
|
||||
self.scale.data.fill_(self.initial_scale)
|
127
src/vision/nn/squeezenet.py
Normal file
127
src/vision/nn/squeezenet.py
Normal file
@ -0,0 +1,127 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.init as init
|
||||
import torch.utils.model_zoo as model_zoo
|
||||
|
||||
__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']
|
||||
|
||||
model_urls = {
|
||||
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
|
||||
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
|
||||
}
|
||||
|
||||
|
||||
class Fire(nn.Module):
|
||||
|
||||
def __init__(self, inplanes, squeeze_planes,
|
||||
expand1x1_planes, expand3x3_planes):
|
||||
super(Fire, self).__init__()
|
||||
self.inplanes = inplanes
|
||||
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
|
||||
self.squeeze_activation = nn.ReLU(inplace=True)
|
||||
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
|
||||
kernel_size=1)
|
||||
self.expand1x1_activation = nn.ReLU(inplace=True)
|
||||
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
|
||||
kernel_size=3, padding=1)
|
||||
self.expand3x3_activation = nn.ReLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.squeeze_activation(self.squeeze(x))
|
||||
return torch.cat([
|
||||
self.expand1x1_activation(self.expand1x1(x)),
|
||||
self.expand3x3_activation(self.expand3x3(x))
|
||||
], 1)
|
||||
|
||||
|
||||
class SqueezeNet(nn.Module):
|
||||
|
||||
def __init__(self, version=1.0, num_classes=1000):
|
||||
super(SqueezeNet, self).__init__()
|
||||
if version not in [1.0, 1.1]:
|
||||
raise ValueError("Unsupported SqueezeNet version {version}:"
|
||||
"1.0 or 1.1 expected".format(version=version))
|
||||
self.num_classes = num_classes
|
||||
if version == 1.0:
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 96, kernel_size=7, stride=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||||
Fire(96, 16, 64, 64),
|
||||
Fire(128, 16, 64, 64),
|
||||
Fire(128, 32, 128, 128),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||||
Fire(256, 32, 128, 128),
|
||||
Fire(256, 48, 192, 192),
|
||||
Fire(384, 48, 192, 192),
|
||||
Fire(384, 64, 256, 256),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
|
||||
Fire(512, 64, 256, 256),
|
||||
)
|
||||
else:
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=3, stride=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(64, 16, 64, 64),
|
||||
Fire(128, 16, 64, 64),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(128, 32, 128, 128),
|
||||
Fire(256, 32, 128, 128),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
Fire(256, 48, 192, 192),
|
||||
Fire(384, 48, 192, 192),
|
||||
Fire(384, 64, 256, 256),
|
||||
Fire(512, 64, 256, 256),
|
||||
)
|
||||
# Final convolution is initialized differently form the rest
|
||||
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(p=0.5),
|
||||
final_conv,
|
||||
nn.ReLU(inplace=True),
|
||||
nn.AvgPool2d(13, stride=1)
|
||||
)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
if m is final_conv:
|
||||
init.normal_(m.weight, mean=0.0, std=0.01)
|
||||
else:
|
||||
init.kaiming_uniform_(m.weight)
|
||||
if m.bias is not None:
|
||||
init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = self.classifier(x)
|
||||
return x.view(x.size(0), self.num_classes)
|
||||
|
||||
|
||||
def squeezenet1_0(pretrained=False, **kwargs):
|
||||
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
|
||||
accuracy with 50x fewer parameters and <0.5MB model size"
|
||||
<https://arxiv.org/abs/1602.07360>`_ paper.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = SqueezeNet(version=1.0, **kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_0']))
|
||||
return model
|
||||
|
||||
|
||||
def squeezenet1_1(pretrained=False, **kwargs):
|
||||
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
|
||||
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
|
||||
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
|
||||
than SqueezeNet 1.0, without sacrificing accuracy.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
"""
|
||||
model = SqueezeNet(version=1.1, **kwargs)
|
||||
if pretrained:
|
||||
model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_1']))
|
||||
return model
|
25
src/vision/nn/vgg.py
Normal file
25
src/vision/nn/vgg.py
Normal file
@ -0,0 +1,25 @@
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# borrowed from https://github.com/amdegroot/ssd.pytorch/blob/master/ssd.py
|
||||
def vgg(cfg, batch_norm=False):
|
||||
layers = []
|
||||
in_channels = 3
|
||||
for v in cfg:
|
||||
if v == 'M':
|
||||
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
||||
elif v == 'C':
|
||||
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
|
||||
else:
|
||||
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
|
||||
if batch_norm:
|
||||
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
|
||||
else:
|
||||
layers += [conv2d, nn.ReLU(inplace=True)]
|
||||
in_channels = v
|
||||
pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
|
||||
conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
|
||||
conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
|
||||
layers += [pool5, conv6,
|
||||
nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
|
||||
return layers
|
0
src/vision/prunning/__init__.py
Normal file
0
src/vision/prunning/__init__.py
Normal file
235
src/vision/prunning/prunner.py
Normal file
235
src/vision/prunning/prunner.py
Normal file
@ -0,0 +1,235 @@
|
||||
import logging
|
||||
from heapq import nsmallest
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..utils.model_book import ModelBook
|
||||
|
||||
|
||||
class ModelPrunner:
|
||||
def __init__(self, model, train_fun, ignored_paths=[]):
|
||||
""" Implement the pruning algorithm described in the paper https://arxiv.org/pdf/1611.06440.pdf .
|
||||
|
||||
The prunning criteria is dC/dh * h, while C is the cost, h is the activation.
|
||||
"""
|
||||
self.model = model
|
||||
self.train_fun = train_fun
|
||||
self.ignored_paths = ignored_paths
|
||||
self.book = ModelBook(self.model)
|
||||
self.outputs = {}
|
||||
self.grads = {}
|
||||
self.handles = []
|
||||
self.decendent_batch_norms = {} # descendants impacted by the conv layers.
|
||||
self.last_conv_path = None # used to trace the graph
|
||||
self.descendent_convs = {} # descendants impacted by the conv layers.
|
||||
self.descendent_linears = {} # descendants impacted by the linear layers.
|
||||
self.last_linear_path = None # used to trace the graph
|
||||
|
||||
def _make_new_conv(self, conv, filter_index, channel_type="out"):
|
||||
if not isinstance(conv, nn.Conv2d):
|
||||
raise TypeError(f"The module is not Conv2d, but {type(conv)}.")
|
||||
|
||||
if channel_type == "out":
|
||||
new_conv = nn.Conv2d(conv.in_channels, conv.out_channels - 1, conv.kernel_size, conv.stride,
|
||||
conv.padding, conv.dilation, conv.groups, conv.bias is not None)
|
||||
mask = torch.ones(conv.out_channels, dtype=torch.uint8)
|
||||
mask[filter_index] = 0
|
||||
new_conv.weight.data = conv.weight.data[mask, :, :, :]
|
||||
if conv.bias is not None:
|
||||
new_conv.bias.data = conv.bias.data[mask]
|
||||
|
||||
elif channel_type == 'in':
|
||||
new_conv = nn.Conv2d(conv.in_channels - 1, conv.out_channels, conv.kernel_size, conv.stride,
|
||||
conv.padding, conv.dilation, conv.groups, conv.bias is not None)
|
||||
mask = torch.ones(conv.in_channels, dtype=torch.uint8)
|
||||
mask[filter_index] = 0
|
||||
new_conv.weight.data = conv.weight.data[:, mask, :, :]
|
||||
if conv.bias is not None:
|
||||
new_conv.bias.data = conv.bias.data
|
||||
else:
|
||||
raise ValueError(f"{channel_type} should be either 'in' or 'out'.")
|
||||
return new_conv
|
||||
|
||||
def remove_conv_filter(self, path, filter_index):
|
||||
conv = self.book.get_module(path)
|
||||
logging.info(f'Prune Conv: {"/".join(path)}, Filter: {filter_index}, Layer: {conv}')
|
||||
new_conv = self._make_new_conv(conv, filter_index, channel_type="out")
|
||||
self._update_model(path, new_conv)
|
||||
|
||||
next_conv_path = self.descendent_convs.get(path)
|
||||
if next_conv_path:
|
||||
next_conv = self.book.get_module(next_conv_path)
|
||||
new_next_conv = self._make_new_conv(next_conv, filter_index, channel_type="in")
|
||||
self._update_model(next_conv_path, new_next_conv)
|
||||
|
||||
# reduce the num_features of batch norm
|
||||
batch_norm_path = self.decendent_batch_norms.get(path)
|
||||
if batch_norm_path:
|
||||
batch_norm = self.book.get_module(batch_norm_path)
|
||||
new_batch_norm = nn.BatchNorm2d(batch_norm.num_features - 1)
|
||||
self._update_model(batch_norm_path, new_batch_norm)
|
||||
|
||||
# reduce the in channels of linear layer
|
||||
linear_path = self.descendent_linears.get(path)
|
||||
if linear_path:
|
||||
linear = self.book.get_module(linear_path)
|
||||
new_linear = self._make_new_linear(linear, filter_index, conv, channel_type="in")
|
||||
self._update_model(linear_path, new_linear)
|
||||
|
||||
@staticmethod
|
||||
def _make_new_linear(linear, feature_index, conv=None, channel_type="out"):
|
||||
if channel_type == "out":
|
||||
new_linear = nn.Linear(linear.in_features, linear.out_features - 1,
|
||||
bias=linear.bias is not None)
|
||||
mask = torch.ones(linear.out_features, dtype=torch.uint8)
|
||||
mask[feature_index] = 0
|
||||
new_linear.weight.data = linear.weight.data[mask, :]
|
||||
if linear.bias is not None:
|
||||
new_linear.bias.data = linear.bias.data[mask]
|
||||
elif channel_type == "in":
|
||||
if conv:
|
||||
block = int(linear.in_features / conv.out_channels)
|
||||
else:
|
||||
block = 1
|
||||
new_linear = nn.Linear(linear.in_features - block, linear.out_features,
|
||||
bias=linear.bias is not None)
|
||||
start_index = feature_index * block
|
||||
end_index = (feature_index + 1) * block
|
||||
mask = torch.ones(linear.in_features, dtype=torch.uint8)
|
||||
mask[start_index: end_index] = 0
|
||||
new_linear.weight.data = linear.weight.data[:, mask]
|
||||
if linear.bias is not None:
|
||||
new_linear.bias.data = linear.bias.data
|
||||
else:
|
||||
raise ValueError(f"{channel_type} should be either 'in' or 'out'.")
|
||||
return new_linear
|
||||
|
||||
def prune_conv_layers(self, num=1):
|
||||
"""Prune one conv2d filter.
|
||||
"""
|
||||
self.register_conv_hooks()
|
||||
before_loss, before_accuracy = self.train_fun(self.model)
|
||||
ranks = []
|
||||
for path, output in self.outputs.items():
|
||||
output = output.data
|
||||
grad = self.grads[path].data
|
||||
v = grad * output
|
||||
v = v.sum(0).sum(1).sum(1) # sum to the channel axis.
|
||||
v = torch.abs(v)
|
||||
v = v / torch.sqrt(torch.sum(v * v)) # normalize
|
||||
for i, e in enumerate(v):
|
||||
ranks.append((path, i, e))
|
||||
to_prune = nsmallest(num, ranks, key=lambda t: t[2])
|
||||
to_prune = sorted(to_prune, key=lambda t: (
|
||||
t[0], -t[1])) # prune the filters with bigger indexes first to avoid rearrangement.
|
||||
for path, filter_index, value in to_prune:
|
||||
self.remove_conv_filter(path, filter_index)
|
||||
self.deregister_hooks()
|
||||
after_loss, after_accuracy = self.train_fun(self.model)
|
||||
return after_loss - before_loss, after_accuracy - before_accuracy
|
||||
|
||||
def register_conv_hooks(self):
|
||||
"""Run register before training for pruning."""
|
||||
self.outputs.clear()
|
||||
self.grads.clear()
|
||||
self.handles.clear()
|
||||
self.last_conv_path = None
|
||||
self.decendent_batch_norms.clear()
|
||||
self.descendent_convs.clear()
|
||||
self.descendent_linears.clear()
|
||||
|
||||
def forward_hook(m, input, output):
|
||||
path = self.book.get_path(m)
|
||||
if isinstance(m, nn.Conv2d):
|
||||
if path not in self.ignored_paths:
|
||||
self.outputs[path] = output
|
||||
if self.last_conv_path:
|
||||
self.descendent_convs[self.last_conv_path] = path
|
||||
self.last_conv_path = path
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
if self.last_conv_path:
|
||||
self.decendent_batch_norms[self.last_conv_path] = path
|
||||
elif isinstance(m, nn.Linear):
|
||||
if self.last_conv_path:
|
||||
self.descendent_linears[self.last_conv_path] = path
|
||||
self.last_conv_path = None # after a linear layer the conv layer doesn't matter
|
||||
|
||||
def backward_hook(m, input, output):
|
||||
path = self.book.get_path(m)
|
||||
self.grads[path] = output[0]
|
||||
|
||||
for path, m in self.book.modules(module_type=(nn.Conv2d, nn.BatchNorm2d, nn.Linear)):
|
||||
h = m.register_forward_hook(forward_hook)
|
||||
self.handles.append(h)
|
||||
h = m.register_backward_hook(backward_hook)
|
||||
self.handles.append(h)
|
||||
|
||||
def deregister_hooks(self):
|
||||
"""Run degresiter before retraining to recover the model"""
|
||||
for handle in self.handles:
|
||||
handle.remove()
|
||||
|
||||
def prune_linear_layers(self, num=1):
|
||||
self.register_linear_hooks()
|
||||
before_loss, before_accuracy = self.train_fun(self.model)
|
||||
ranks = []
|
||||
for path, output in self.outputs.items():
|
||||
output = output.data
|
||||
grad = self.grads[path].data
|
||||
v = grad * output
|
||||
v = v.sum(0) # sum to the channel axis.
|
||||
v = torch.abs(v)
|
||||
v = v / torch.sqrt(torch.sum(v * v)) # normalize
|
||||
for i, e in enumerate(v):
|
||||
ranks.append((path, i, e))
|
||||
to_prune = nsmallest(num, ranks, key=lambda t: t[2])
|
||||
to_prune = sorted(to_prune, key=lambda t: (t[0], -t[1]))
|
||||
for path, feature_index, value in to_prune:
|
||||
self.remove_linear_feature(path, feature_index)
|
||||
self.deregister_hooks()
|
||||
after_loss, after_accuracy = self.train_fun(self.model)
|
||||
return after_loss - before_loss, after_accuracy - before_accuracy
|
||||
|
||||
def register_linear_hooks(self):
|
||||
self.outputs.clear()
|
||||
self.grads.clear()
|
||||
self.handles.clear()
|
||||
self.descendent_linears.clear()
|
||||
self.last_linear_path = None
|
||||
|
||||
def forward_hook(m, input, output):
|
||||
path = self.book.get_path(m)
|
||||
if path not in self.ignored_paths:
|
||||
self.outputs[path] = output
|
||||
if self.last_linear_path:
|
||||
self.descendent_linears[self.last_linear_path] = path
|
||||
self.last_linear_path = path
|
||||
|
||||
def backward_hook(m, input, output):
|
||||
path = self.book.get_path(m)
|
||||
self.grads[path] = output[0]
|
||||
|
||||
for _, m in self.book.linear_modules():
|
||||
h = m.register_forward_hook(forward_hook)
|
||||
self.handles.append(h)
|
||||
h = m.register_backward_hook(backward_hook)
|
||||
self.handles.append(h)
|
||||
|
||||
def remove_linear_feature(self, path, feature_index):
|
||||
linear = self.book.get_module(path)
|
||||
logging.info(f'Prune Linear: {"/".join(path)}, Filter: {feature_index}, Layer: {linear}')
|
||||
new_linear = self._make_new_linear(linear, feature_index, channel_type="out")
|
||||
self._update_model(path, new_linear)
|
||||
|
||||
# update following linear layers
|
||||
next_linear_path = self.descendent_linears.get(path)
|
||||
if next_linear_path:
|
||||
next_linear = self.book.get_module(next_linear_path)
|
||||
new_next_linear = self._make_new_linear(next_linear, feature_index, channel_type='in')
|
||||
self._update_model(next_linear_path, new_next_linear)
|
||||
|
||||
def _update_model(self, path, module):
|
||||
parent = self.book.get_module(path[:-1])
|
||||
parent._modules[path[-1]] = module
|
||||
self.book.update(path, module)
|
0
src/vision/ssd/__init__.py
Normal file
0
src/vision/ssd/__init__.py
Normal file
0
src/vision/ssd/config/__init__.py
Normal file
0
src/vision/ssd/config/__init__.py
Normal file
32
src/vision/ssd/config/mobilenetv1_ssd_config.py
Normal file
32
src/vision/ssd/config/mobilenetv1_ssd_config.py
Normal file
@ -0,0 +1,32 @@
|
||||
import numpy as np
|
||||
|
||||
from vision.utils.box_utils import SSDSpec, SSDBoxSizes, generate_ssd_priors
|
||||
|
||||
image_size = 300
|
||||
image_mean = np.array([127, 127, 127]) # RGB layout
|
||||
image_std = 128.0
|
||||
iou_threshold = 0.45
|
||||
center_variance = 0.1
|
||||
size_variance = 0.2
|
||||
|
||||
specs = [
|
||||
SSDSpec(19, 16, SSDBoxSizes(60, 105), [2, 3]),
|
||||
SSDSpec(10, 32, SSDBoxSizes(105, 150), [2, 3]),
|
||||
SSDSpec(5, 64, SSDBoxSizes(150, 195), [2, 3]),
|
||||
SSDSpec(3, 100, SSDBoxSizes(195, 240), [2, 3]),
|
||||
SSDSpec(2, 150, SSDBoxSizes(240, 285), [2, 3]),
|
||||
SSDSpec(1, 300, SSDBoxSizes(285, 330), [2, 3])
|
||||
]
|
||||
|
||||
priors = generate_ssd_priors(specs, image_size)
|
||||
|
||||
# print(' ')
|
||||
# print('SSD-Mobilenet-v1 priors:')
|
||||
# print(priors.shape)
|
||||
# print(priors)
|
||||
# print(' ')
|
||||
|
||||
# import torch
|
||||
# torch.save(priors, 'mb1-ssd-priors.pt')
|
||||
|
||||
# np.savetxt('mb1-ssd-priors.txt', priors.numpy())
|
21
src/vision/ssd/config/squeezenet_ssd_config.py
Normal file
21
src/vision/ssd/config/squeezenet_ssd_config.py
Normal file
@ -0,0 +1,21 @@
|
||||
import numpy as np
|
||||
|
||||
from vision.utils.box_utils import SSDSpec, SSDBoxSizes, generate_ssd_priors
|
||||
|
||||
image_size = 300
|
||||
image_mean = np.array([127, 127, 127]) # RGB layout
|
||||
image_std = 128.0
|
||||
iou_threshold = 0.45
|
||||
center_variance = 0.1
|
||||
size_variance = 0.2
|
||||
|
||||
specs = [
|
||||
SSDSpec(17, 16, SSDBoxSizes(60, 105), [2, 3]),
|
||||
SSDSpec(10, 32, SSDBoxSizes(105, 150), [2, 3]),
|
||||
SSDSpec(5, 64, SSDBoxSizes(150, 195), [2, 3]),
|
||||
SSDSpec(3, 100, SSDBoxSizes(195, 240), [2, 3]),
|
||||
SSDSpec(2, 150, SSDBoxSizes(240, 285), [2, 3]),
|
||||
SSDSpec(1, 300, SSDBoxSizes(285, 330), [2, 3])
|
||||
]
|
||||
|
||||
priors = generate_ssd_priors(specs, image_size)
|
22
src/vision/ssd/config/vgg_ssd_config.py
Normal file
22
src/vision/ssd/config/vgg_ssd_config.py
Normal file
@ -0,0 +1,22 @@
|
||||
import numpy as np
|
||||
|
||||
from vision.utils.box_utils import SSDSpec, SSDBoxSizes, generate_ssd_priors
|
||||
|
||||
image_size = 300
|
||||
image_mean = np.array([123, 117, 104]) # RGB layout
|
||||
image_std = 1.0
|
||||
|
||||
iou_threshold = 0.45
|
||||
center_variance = 0.1
|
||||
size_variance = 0.2
|
||||
|
||||
specs = [
|
||||
SSDSpec(38, 8, SSDBoxSizes(30, 60), [2]),
|
||||
SSDSpec(19, 16, SSDBoxSizes(60, 111), [2, 3]),
|
||||
SSDSpec(10, 32, SSDBoxSizes(111, 162), [2, 3]),
|
||||
SSDSpec(5, 64, SSDBoxSizes(162, 213), [2, 3]),
|
||||
SSDSpec(3, 100, SSDBoxSizes(213, 264), [2]),
|
||||
SSDSpec(1, 300, SSDBoxSizes(264, 315), [2])
|
||||
]
|
||||
|
||||
priors = generate_ssd_priors(specs, image_size)
|
62
src/vision/ssd/data_preprocessing.py
Normal file
62
src/vision/ssd/data_preprocessing.py
Normal file
@ -0,0 +1,62 @@
|
||||
from ..transforms.transforms import *
|
||||
|
||||
|
||||
class TrainAugmentation:
|
||||
def __init__(self, size, mean=0, std=1.0):
|
||||
"""
|
||||
Args:
|
||||
size: the size the of final image.
|
||||
mean: mean pixel value per channel.
|
||||
"""
|
||||
self.mean = mean
|
||||
self.size = size
|
||||
self.augment = Compose([
|
||||
ConvertFromInts(),
|
||||
PhotometricDistort(),
|
||||
Expand(self.mean),
|
||||
RandomSampleCrop(),
|
||||
RandomMirror(),
|
||||
ToPercentCoords(),
|
||||
Resize(self.size),
|
||||
SubtractMeans(self.mean),
|
||||
lambda img, boxes=None, labels=None: (img / std, boxes, labels),
|
||||
ToTensor(),
|
||||
])
|
||||
|
||||
def __call__(self, img, boxes, labels):
|
||||
"""
|
||||
|
||||
Args:
|
||||
img: the output of cv.imread in RGB layout.
|
||||
boxes: boundding boxes in the form of (x1, y1, x2, y2).
|
||||
labels: labels of boxes.
|
||||
"""
|
||||
return self.augment(img, boxes, labels)
|
||||
|
||||
|
||||
class TestTransform:
|
||||
def __init__(self, size, mean=0.0, std=1.0):
|
||||
self.transform = Compose([
|
||||
ToPercentCoords(),
|
||||
Resize(size),
|
||||
SubtractMeans(mean),
|
||||
lambda img, boxes=None, labels=None: (img / std, boxes, labels),
|
||||
ToTensor(),
|
||||
])
|
||||
|
||||
def __call__(self, image, boxes, labels):
|
||||
return self.transform(image, boxes, labels)
|
||||
|
||||
|
||||
class PredictionTransform:
|
||||
def __init__(self, size, mean=0.0, std=1.0):
|
||||
self.transform = Compose([
|
||||
Resize(size),
|
||||
SubtractMeans(mean),
|
||||
lambda img, boxes=None, labels=None: (img / std, boxes, labels),
|
||||
ToTensor()
|
||||
])
|
||||
|
||||
def __call__(self, image):
|
||||
image, _, _ = self.transform(image)
|
||||
return image
|
77
src/vision/ssd/fpn_mobilenetv1_ssd.py
Normal file
77
src/vision/ssd/fpn_mobilenetv1_ssd.py
Normal file
@ -0,0 +1,77 @@
|
||||
import torch
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
|
||||
|
||||
from .config import mobilenetv1_ssd_config as config
|
||||
from .fpn_ssd import FPNSSD
|
||||
from .predictor import Predictor
|
||||
from ..nn.mobilenet import MobileNetV1
|
||||
|
||||
|
||||
def create_fpn_mobilenetv1_ssd(num_classes):
|
||||
base_net = MobileNetV1(1001).features # disable dropout layer
|
||||
|
||||
source_layer_indexes = [
|
||||
(69, Conv2d(in_channels=512, out_channels=256, kernel_size=1)),
|
||||
(len(base_net), Conv2d(in_channels=1024, out_channels=256, kernel_size=1)),
|
||||
]
|
||||
extras = ModuleList([
|
||||
Sequential(
|
||||
Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
return FPNSSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers)
|
||||
|
||||
|
||||
def create_fpn_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5,
|
||||
device=torch.device('cpu')):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean, config.priors,
|
||||
config.center_variance, config.size_variance,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
143
src/vision/ssd/fpn_ssd.py
Normal file
143
src/vision/ssd/fpn_ssd.py
Normal file
@ -0,0 +1,143 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ..utils import box_utils
|
||||
|
||||
|
||||
class FPNSSD(nn.Module):
|
||||
def __init__(self, num_classes: int, base_net: nn.ModuleList, source_layer_indexes: List[int],
|
||||
extras: nn.ModuleList, classification_headers: nn.ModuleList,
|
||||
regression_headers: nn.ModuleList, upsample_mode="nearest"):
|
||||
"""Compose a SSD model using the given components.
|
||||
"""
|
||||
super(FPNSSD, self).__init__()
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.base_net = base_net
|
||||
self.source_layer_indexes = source_layer_indexes
|
||||
self.extras = extras
|
||||
self.classification_headers = classification_headers
|
||||
self.regression_headers = regression_headers
|
||||
self.upsample_mode = upsample_mode
|
||||
|
||||
# register layers in source_layer_indexes by adding them to a module list
|
||||
self.source_layer_add_ons = nn.ModuleList([t[1] for t in source_layer_indexes if isinstance(t, tuple)])
|
||||
self.upsamplers = [
|
||||
nn.Upsample(size=(19, 19), mode='bilinear'),
|
||||
nn.Upsample(size=(10, 10), mode='bilinear'),
|
||||
nn.Upsample(size=(5, 5), mode='bilinear'),
|
||||
nn.Upsample(size=(3, 3), mode='bilinear'),
|
||||
nn.Upsample(size=(2, 2), mode='bilinear'),
|
||||
]
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
confidences = []
|
||||
locations = []
|
||||
start_layer_index = 0
|
||||
header_index = 0
|
||||
features = []
|
||||
for end_layer_index in self.source_layer_indexes:
|
||||
|
||||
if isinstance(end_layer_index, tuple):
|
||||
added_layer = end_layer_index[1]
|
||||
end_layer_index = end_layer_index[0]
|
||||
else:
|
||||
added_layer = None
|
||||
for layer in self.base_net[start_layer_index: end_layer_index]:
|
||||
x = layer(x)
|
||||
start_layer_index = end_layer_index
|
||||
if added_layer:
|
||||
y = added_layer(x)
|
||||
else:
|
||||
y = x
|
||||
# confidence, location = self.compute_header(header_index, y)
|
||||
features.append(y)
|
||||
header_index += 1
|
||||
# confidences.append(confidence)
|
||||
# locations.append(location)
|
||||
|
||||
for layer in self.base_net[end_layer_index:]:
|
||||
x = layer(x)
|
||||
|
||||
for layer in self.extras:
|
||||
x = layer(x)
|
||||
# confidence, location = self.compute_header(header_index, x)
|
||||
features.append(x)
|
||||
header_index += 1
|
||||
# confidences.append(confidence)
|
||||
# locations.append(location)
|
||||
|
||||
upstream_feature = None
|
||||
for i in range(len(features) - 1, -1, -1):
|
||||
feature = features[i]
|
||||
if upstream_feature is not None:
|
||||
upstream_feature = self.upsamplers[i](upstream_feature)
|
||||
upstream_feature += feature
|
||||
else:
|
||||
upstream_feature = feature
|
||||
confidence, location = self.compute_header(i, upstream_feature)
|
||||
confidences.append(confidence)
|
||||
locations.append(location)
|
||||
confidences = torch.cat(confidences, 1)
|
||||
locations = torch.cat(locations, 1)
|
||||
return confidences, locations
|
||||
|
||||
def compute_header(self, i, x):
|
||||
confidence = self.classification_headers[i](x)
|
||||
confidence = confidence.permute(0, 2, 3, 1).contiguous()
|
||||
confidence = confidence.view(confidence.size(0), -1, self.num_classes)
|
||||
|
||||
location = self.regression_headers[i](x)
|
||||
location = location.permute(0, 2, 3, 1).contiguous()
|
||||
location = location.view(location.size(0), -1, 4)
|
||||
|
||||
return confidence, location
|
||||
|
||||
def init_from_base_net(self, model):
|
||||
self.base_net.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage), strict=False)
|
||||
self.source_layer_add_ons.apply(_xavier_init_)
|
||||
self.extras.apply(_xavier_init_)
|
||||
self.classification_headers.apply(_xavier_init_)
|
||||
self.regression_headers.apply(_xavier_init_)
|
||||
|
||||
def init(self):
|
||||
self.base_net.apply(_xavier_init_)
|
||||
self.source_layer_add_ons.apply(_xavier_init_)
|
||||
self.extras.apply(_xavier_init_)
|
||||
self.classification_headers.apply(_xavier_init_)
|
||||
self.regression_headers.apply(_xavier_init_)
|
||||
|
||||
def load(self, model):
|
||||
self.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage))
|
||||
|
||||
def save(self, model_path):
|
||||
torch.save(self.state_dict(), model_path)
|
||||
|
||||
|
||||
class MatchPrior(object):
|
||||
def __init__(self, center_form_priors, center_variance, size_variance, iou_threshold):
|
||||
self.center_form_priors = center_form_priors
|
||||
self.corner_form_priors = box_utils.center_form_to_corner_form(center_form_priors)
|
||||
self.center_variance = center_variance
|
||||
self.size_variance = size_variance
|
||||
self.iou_threshold = iou_threshold
|
||||
|
||||
def __call__(self, gt_boxes, gt_labels):
|
||||
if type(gt_boxes) is np.ndarray:
|
||||
gt_boxes = torch.from_numpy(gt_boxes)
|
||||
if type(gt_labels) is np.ndarray:
|
||||
gt_labels = torch.from_numpy(gt_labels)
|
||||
boxes, labels = box_utils.assign_priors(gt_boxes, gt_labels,
|
||||
self.corner_form_priors, self.iou_threshold)
|
||||
boxes = box_utils.corner_form_to_center_form(boxes)
|
||||
locations = box_utils.convert_boxes_to_locations(boxes, self.center_form_priors, self.center_variance,
|
||||
self.size_variance)
|
||||
return locations, labels
|
||||
|
||||
|
||||
def _xavier_init_(m: nn.Module):
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.xavier_uniform_(m.weight)
|
71
src/vision/ssd/mobilenet_v2_ssd_lite.py
Normal file
71
src/vision/ssd/mobilenet_v2_ssd_lite.py
Normal file
@ -0,0 +1,71 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, BatchNorm2d
|
||||
|
||||
from .config import mobilenetv1_ssd_config as config
|
||||
from .predictor import Predictor
|
||||
from .ssd import SSD, GraphPath
|
||||
from ..nn.mobilenet_v2 import MobileNetV2, InvertedResidual
|
||||
|
||||
|
||||
def SeperableConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, onnx_compatible=False):
|
||||
"""Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d.
|
||||
"""
|
||||
ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
|
||||
return Sequential(
|
||||
Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
|
||||
groups=in_channels, stride=stride, padding=padding),
|
||||
BatchNorm2d(in_channels),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
|
||||
)
|
||||
|
||||
|
||||
def create_mobilenetv2_ssd_lite(num_classes, width_mult=1.0, use_batch_norm=True, onnx_compatible=False, is_test=False):
|
||||
base_net = MobileNetV2(width_mult=width_mult, use_batch_norm=use_batch_norm,
|
||||
onnx_compatible=onnx_compatible).features
|
||||
|
||||
source_layer_indexes = [
|
||||
GraphPath(14, 'conv', 3),
|
||||
19,
|
||||
]
|
||||
extras = ModuleList([
|
||||
InvertedResidual(1280, 512, stride=2, expand_ratio=0.2),
|
||||
InvertedResidual(512, 256, stride=2, expand_ratio=0.25),
|
||||
InvertedResidual(256, 256, stride=2, expand_ratio=0.5),
|
||||
InvertedResidual(256, 64, stride=2, expand_ratio=0.25)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * 4,
|
||||
kernel_size=3, padding=1, onnx_compatible=False),
|
||||
SeperableConv2d(in_channels=1280, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
|
||||
Conv2d(in_channels=64, out_channels=6 * 4, kernel_size=1),
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=1280, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=64, out_channels=6 * num_classes, kernel_size=1),
|
||||
])
|
||||
|
||||
return SSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers, is_test=is_test, config=config)
|
||||
|
||||
|
||||
def create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200, nms_method=None, sigma=0.5,
|
||||
device=torch.device('cpu')):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean,
|
||||
config.image_std,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
75
src/vision/ssd/mobilenetv1_ssd.py
Normal file
75
src/vision/ssd/mobilenetv1_ssd.py
Normal file
@ -0,0 +1,75 @@
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
|
||||
|
||||
from .config import mobilenetv1_ssd_config as config
|
||||
from .predictor import Predictor
|
||||
from .ssd import SSD
|
||||
from ..nn.mobilenet import MobileNetV1
|
||||
|
||||
|
||||
def create_mobilenetv1_ssd(num_classes, is_test=False):
|
||||
base_net = MobileNetV1(1001).model # disable dropout layer
|
||||
|
||||
source_layer_indexes = [
|
||||
12,
|
||||
14,
|
||||
]
|
||||
extras = ModuleList([
|
||||
Sequential(
|
||||
Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
return SSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers, is_test=is_test, config=config)
|
||||
|
||||
|
||||
def create_mobilenetv1_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean,
|
||||
config.image_std,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
80
src/vision/ssd/mobilenetv1_ssd_lite.py
Normal file
80
src/vision/ssd/mobilenetv1_ssd_lite.py
Normal file
@ -0,0 +1,80 @@
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
|
||||
|
||||
from .config import mobilenetv1_ssd_config as config
|
||||
from .predictor import Predictor
|
||||
from .ssd import SSD
|
||||
from ..nn.mobilenet import MobileNetV1
|
||||
|
||||
|
||||
def SeperableConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0):
|
||||
"""Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d.
|
||||
"""
|
||||
return Sequential(
|
||||
Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
|
||||
groups=in_channels, stride=stride, padding=padding),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
|
||||
)
|
||||
|
||||
|
||||
def create_mobilenetv1_ssd_lite(num_classes, is_test=False):
|
||||
base_net = MobileNetV1(1001).model # disable dropout layer
|
||||
|
||||
source_layer_indexes = [
|
||||
12,
|
||||
14,
|
||||
]
|
||||
extras = ModuleList([
|
||||
Sequential(
|
||||
Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1)
|
||||
)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=1),
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=1),
|
||||
])
|
||||
|
||||
return SSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers, is_test=is_test, config=config)
|
||||
|
||||
|
||||
def create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean,
|
||||
config.image_std,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
73
src/vision/ssd/predictor.py
Normal file
73
src/vision/ssd/predictor.py
Normal file
@ -0,0 +1,73 @@
|
||||
import torch
|
||||
|
||||
from .data_preprocessing import PredictionTransform
|
||||
from ..utils import box_utils
|
||||
from ..utils.misc import Timer
|
||||
|
||||
|
||||
class Predictor:
|
||||
def __init__(self, net, size, mean=0.0, std=1.0, nms_method=None,
|
||||
iou_threshold=0.45, filter_threshold=0.01, candidate_size=200, sigma=0.5, device=None):
|
||||
self.net = net
|
||||
self.transform = PredictionTransform(size, mean, std)
|
||||
self.iou_threshold = iou_threshold
|
||||
self.filter_threshold = filter_threshold
|
||||
self.candidate_size = candidate_size
|
||||
self.nms_method = nms_method
|
||||
|
||||
self.sigma = sigma
|
||||
if device:
|
||||
self.device = device
|
||||
else:
|
||||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
self.net.to(self.device)
|
||||
self.net.eval()
|
||||
|
||||
self.timer = Timer()
|
||||
|
||||
def predict(self, image, top_k=-1, prob_threshold=None):
|
||||
cpu_device = torch.device("cpu")
|
||||
height, width, _ = image.shape
|
||||
image = self.transform(image)
|
||||
# print(image)
|
||||
images = image.unsqueeze(0)
|
||||
images = images.to(self.device)
|
||||
with torch.no_grad():
|
||||
self.timer.start()
|
||||
scores, boxes = self.net.forward(images)
|
||||
print("Inference time: ", self.timer.end())
|
||||
boxes = boxes[0]
|
||||
scores = scores[0]
|
||||
if not prob_threshold:
|
||||
prob_threshold = self.filter_threshold
|
||||
|
||||
boxes = boxes.to(cpu_device)
|
||||
scores = scores.to(cpu_device)
|
||||
picked_box_probs = []
|
||||
picked_labels = []
|
||||
for class_index in range(1, scores.size(1)):
|
||||
probs = scores[:, class_index]
|
||||
mask = probs > prob_threshold
|
||||
probs = probs[mask]
|
||||
if probs.size(0) == 0:
|
||||
continue
|
||||
|
||||
subset_boxes = boxes[mask, :]
|
||||
box_probs = torch.cat([subset_boxes, probs.reshape(-1, 1)], dim=1)
|
||||
box_probs = box_utils.nms(box_probs, self.nms_method,
|
||||
score_threshold=prob_threshold,
|
||||
iou_threshold=self.iou_threshold,
|
||||
sigma=self.sigma,
|
||||
top_k=top_k,
|
||||
candidate_size=self.candidate_size)
|
||||
picked_box_probs.append(box_probs)
|
||||
picked_labels.extend([class_index] * box_probs.size(0))
|
||||
if not picked_box_probs:
|
||||
return torch.tensor([]), torch.tensor([]), torch.tensor([])
|
||||
picked_box_probs = torch.cat(picked_box_probs)
|
||||
picked_box_probs[:, 0] *= width
|
||||
picked_box_probs[:, 1] *= height
|
||||
picked_box_probs[:, 2] *= width
|
||||
picked_box_probs[:, 3] *= height
|
||||
return picked_box_probs[:, :4], torch.tensor(picked_labels), picked_box_probs[:, 4]
|
86
src/vision/ssd/squeezenet_ssd_lite.py
Normal file
86
src/vision/ssd/squeezenet_ssd_lite.py
Normal file
@ -0,0 +1,86 @@
|
||||
import torch
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, ReLU
|
||||
|
||||
from .config import squeezenet_ssd_config as config
|
||||
from .predictor import Predictor
|
||||
from .ssd import SSD
|
||||
from ..nn.squeezenet import squeezenet1_1
|
||||
|
||||
|
||||
def SeperableConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0):
|
||||
"""Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d.
|
||||
"""
|
||||
return Sequential(
|
||||
Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
|
||||
groups=in_channels, stride=stride, padding=padding),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
|
||||
)
|
||||
|
||||
|
||||
def create_squeezenet_ssd_lite(num_classes, is_test=False):
|
||||
base_net = squeezenet1_1(False).features # disable dropout layer
|
||||
|
||||
source_layer_indexes = [
|
||||
12
|
||||
]
|
||||
extras = ModuleList([
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=2),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
SeperableConv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1)
|
||||
)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=1),
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=1),
|
||||
])
|
||||
|
||||
return SSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers, is_test=is_test, config=config)
|
||||
|
||||
|
||||
def create_squeezenet_ssd_lite_predictor(net, candidate_size=200, nms_method=None, sigma=0.5,
|
||||
device=torch.device('cpu')):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean,
|
||||
config.image_std,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
167
src/vision/ssd/ssd.py
Normal file
167
src/vision/ssd/ssd.py
Normal file
@ -0,0 +1,167 @@
|
||||
from collections import namedtuple
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..utils import box_utils
|
||||
|
||||
GraphPath = namedtuple("GraphPath", ['s0', 'name', 's1']) #
|
||||
|
||||
|
||||
class SSD(nn.Module):
|
||||
def __init__(self, num_classes: int, base_net: nn.ModuleList, source_layer_indexes: List[int],
|
||||
extras: nn.ModuleList, classification_headers: nn.ModuleList,
|
||||
regression_headers: nn.ModuleList, is_test=False, config=None, device=None):
|
||||
"""Compose a SSD model using the given components.
|
||||
"""
|
||||
super(SSD, self).__init__()
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.base_net = base_net
|
||||
self.source_layer_indexes = source_layer_indexes
|
||||
self.extras = extras
|
||||
self.classification_headers = classification_headers
|
||||
self.regression_headers = regression_headers
|
||||
self.is_test = is_test
|
||||
self.config = config
|
||||
|
||||
# register layers in source_layer_indexes by adding them to a module list
|
||||
self.source_layer_add_ons = nn.ModuleList([t[1] for t in source_layer_indexes
|
||||
if isinstance(t, tuple) and not isinstance(t, GraphPath)])
|
||||
if device:
|
||||
self.device = device
|
||||
else:
|
||||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
if is_test:
|
||||
self.config = config
|
||||
self.priors = config.priors.to(self.device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
confidences = []
|
||||
locations = []
|
||||
start_layer_index = 0
|
||||
header_index = 0
|
||||
for end_layer_index in self.source_layer_indexes:
|
||||
if isinstance(end_layer_index, GraphPath):
|
||||
path = end_layer_index
|
||||
end_layer_index = end_layer_index.s0
|
||||
added_layer = None
|
||||
elif isinstance(end_layer_index, tuple):
|
||||
added_layer = end_layer_index[1]
|
||||
end_layer_index = end_layer_index[0]
|
||||
path = None
|
||||
else:
|
||||
added_layer = None
|
||||
path = None
|
||||
for layer in self.base_net[start_layer_index: end_layer_index]:
|
||||
x = layer(x)
|
||||
if added_layer:
|
||||
y = added_layer(x)
|
||||
else:
|
||||
y = x
|
||||
if path:
|
||||
sub = getattr(self.base_net[end_layer_index], path.name)
|
||||
for layer in sub[:path.s1]:
|
||||
x = layer(x)
|
||||
y = x
|
||||
for layer in sub[path.s1:]:
|
||||
x = layer(x)
|
||||
end_layer_index += 1
|
||||
start_layer_index = end_layer_index
|
||||
confidence, location = self.compute_header(header_index, y)
|
||||
header_index += 1
|
||||
confidences.append(confidence)
|
||||
locations.append(location)
|
||||
|
||||
for layer in self.base_net[end_layer_index:]:
|
||||
x = layer(x)
|
||||
|
||||
for layer in self.extras:
|
||||
x = layer(x)
|
||||
confidence, location = self.compute_header(header_index, x)
|
||||
header_index += 1
|
||||
confidences.append(confidence)
|
||||
locations.append(location)
|
||||
|
||||
confidences = torch.cat(confidences, 1)
|
||||
locations = torch.cat(locations, 1)
|
||||
|
||||
if self.is_test:
|
||||
confidences = F.softmax(confidences, dim=2)
|
||||
boxes = box_utils.convert_locations_to_boxes(
|
||||
locations, self.priors, self.config.center_variance, self.config.size_variance
|
||||
)
|
||||
boxes = box_utils.center_form_to_corner_form(boxes)
|
||||
return confidences, boxes
|
||||
else:
|
||||
return confidences, locations
|
||||
|
||||
def compute_header(self, i, x):
|
||||
confidence = self.classification_headers[i](x)
|
||||
confidence = confidence.permute(0, 2, 3, 1).contiguous()
|
||||
confidence = confidence.view(confidence.size(0), -1, self.num_classes)
|
||||
|
||||
location = self.regression_headers[i](x)
|
||||
location = location.permute(0, 2, 3, 1).contiguous()
|
||||
location = location.view(location.size(0), -1, 4)
|
||||
|
||||
return confidence, location
|
||||
|
||||
def init_from_base_net(self, model):
|
||||
self.base_net.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage), strict=True)
|
||||
self.source_layer_add_ons.apply(_xavier_init_)
|
||||
self.extras.apply(_xavier_init_)
|
||||
self.classification_headers.apply(_xavier_init_)
|
||||
self.regression_headers.apply(_xavier_init_)
|
||||
|
||||
def init_from_pretrained_ssd(self, model):
|
||||
state_dict = torch.load(model, map_location=lambda storage, loc: storage)
|
||||
state_dict = {k: v for k, v in state_dict.items() if
|
||||
not (k.startswith("classification_headers") or k.startswith("regression_headers"))}
|
||||
model_dict = self.state_dict()
|
||||
model_dict.update(state_dict)
|
||||
self.load_state_dict(model_dict)
|
||||
self.classification_headers.apply(_xavier_init_)
|
||||
self.regression_headers.apply(_xavier_init_)
|
||||
|
||||
def init(self):
|
||||
self.base_net.apply(_xavier_init_)
|
||||
self.source_layer_add_ons.apply(_xavier_init_)
|
||||
self.extras.apply(_xavier_init_)
|
||||
self.classification_headers.apply(_xavier_init_)
|
||||
self.regression_headers.apply(_xavier_init_)
|
||||
|
||||
def load(self, model):
|
||||
self.load_state_dict(torch.load(model, map_location=lambda storage, loc: storage))
|
||||
|
||||
def save(self, model_path):
|
||||
torch.save(self.state_dict(), model_path)
|
||||
|
||||
|
||||
class MatchPrior(object):
|
||||
def __init__(self, center_form_priors, center_variance, size_variance, iou_threshold):
|
||||
self.center_form_priors = center_form_priors
|
||||
self.corner_form_priors = box_utils.center_form_to_corner_form(center_form_priors)
|
||||
self.center_variance = center_variance
|
||||
self.size_variance = size_variance
|
||||
self.iou_threshold = iou_threshold
|
||||
|
||||
def __call__(self, gt_boxes, gt_labels):
|
||||
if type(gt_boxes) is np.ndarray:
|
||||
gt_boxes = torch.from_numpy(gt_boxes)
|
||||
if type(gt_labels) is np.ndarray:
|
||||
gt_labels = torch.from_numpy(gt_labels)
|
||||
boxes, labels = box_utils.assign_priors(gt_boxes, gt_labels,
|
||||
self.corner_form_priors, self.iou_threshold)
|
||||
boxes = box_utils.corner_form_to_center_form(boxes)
|
||||
locations = box_utils.convert_boxes_to_locations(boxes, self.center_form_priors, self.center_variance,
|
||||
self.size_variance)
|
||||
return locations, labels
|
||||
|
||||
|
||||
def _xavier_init_(m: nn.Module):
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.xavier_uniform_(m.weight)
|
76
src/vision/ssd/vgg_ssd.py
Normal file
76
src/vision/ssd/vgg_ssd.py
Normal file
@ -0,0 +1,76 @@
|
||||
from torch.nn import Conv2d, Sequential, ModuleList, ReLU, BatchNorm2d
|
||||
|
||||
from .config import vgg_ssd_config as config
|
||||
from .predictor import Predictor
|
||||
from .ssd import SSD
|
||||
from ..nn.vgg import vgg
|
||||
|
||||
|
||||
def create_vgg_ssd(num_classes, is_test=False):
|
||||
vgg_config = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
|
||||
512, 512, 512]
|
||||
base_net = ModuleList(vgg(vgg_config))
|
||||
|
||||
source_layer_indexes = [
|
||||
(23, BatchNorm2d(512)),
|
||||
len(base_net),
|
||||
]
|
||||
extras = ModuleList([
|
||||
Sequential(
|
||||
Conv2d(in_channels=1024, out_channels=256, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=512, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3),
|
||||
ReLU()
|
||||
),
|
||||
Sequential(
|
||||
Conv2d(in_channels=256, out_channels=128, kernel_size=1),
|
||||
ReLU(),
|
||||
Conv2d(in_channels=128, out_channels=256, kernel_size=3),
|
||||
ReLU()
|
||||
)
|
||||
])
|
||||
|
||||
regression_headers = ModuleList([
|
||||
Conv2d(in_channels=512, out_channels=4 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=1024, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=4 * 4, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=4 * 4, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
classification_headers = ModuleList([
|
||||
Conv2d(in_channels=512, out_channels=4 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=1024, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=4 * num_classes, kernel_size=3, padding=1),
|
||||
Conv2d(in_channels=256, out_channels=4 * num_classes, kernel_size=3, padding=1),
|
||||
# TODO: change to kernel_size=1, padding=0?
|
||||
])
|
||||
|
||||
return SSD(num_classes, base_net, source_layer_indexes,
|
||||
extras, classification_headers, regression_headers, is_test=is_test, config=config)
|
||||
|
||||
|
||||
def create_vgg_ssd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
|
||||
predictor = Predictor(net, config.image_size, config.image_mean,
|
||||
nms_method=nms_method,
|
||||
iou_threshold=config.iou_threshold,
|
||||
candidate_size=candidate_size,
|
||||
sigma=sigma,
|
||||
device=device)
|
||||
return predictor
|
0
src/vision/test/__init__.py
Normal file
0
src/vision/test/__init__.py
Normal file
BIN
src/vision/test/assets/000138.jpg
Normal file
BIN
src/vision/test/assets/000138.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 85 KiB |
49
src/vision/test/test_vgg_ssd.py
Normal file
49
src/vision/test/test_vgg_ssd.py
Normal file
@ -0,0 +1,49 @@
|
||||
import tempfile
|
||||
|
||||
import torch
|
||||
|
||||
from ..ssd.vgg_ssd import create_vgg_ssd
|
||||
|
||||
|
||||
def test_create_vgg_ssd():
|
||||
for num_classes in [2, 10, 21, 100]:
|
||||
_ = create_vgg_ssd(num_classes)
|
||||
|
||||
|
||||
def test_forward():
|
||||
for num_classes in [2]:
|
||||
net = create_vgg_ssd(num_classes)
|
||||
net.init()
|
||||
net.eval()
|
||||
x = torch.randn(2, 3, 300, 300)
|
||||
confidences, locations = net.forward(x)
|
||||
assert confidences.size() == torch.Size([2, 8732, num_classes])
|
||||
assert locations.size() == torch.Size([2, 8732, 4])
|
||||
assert confidences.nonzero().size(0) != 0
|
||||
assert locations.nonzero().size(0) != 0
|
||||
|
||||
|
||||
def test_save_model():
|
||||
net = create_vgg_ssd(10)
|
||||
net.init()
|
||||
with tempfile.TemporaryFile() as f:
|
||||
net.save(f)
|
||||
|
||||
|
||||
def test_save_load_model_consistency():
|
||||
net = create_vgg_ssd(20)
|
||||
net.init()
|
||||
model_path = tempfile.NamedTemporaryFile().name
|
||||
net.save(model_path)
|
||||
net_copy = create_vgg_ssd(20)
|
||||
net_copy.load(model_path)
|
||||
|
||||
net.eval()
|
||||
net_copy.eval()
|
||||
|
||||
for _ in range(1):
|
||||
x = torch.randn(1, 3, 300, 300)
|
||||
confidences1, locations1 = net.forward(x)
|
||||
confidences2, locations2 = net_copy.forward(x)
|
||||
assert (confidences1 == confidences2).long().sum() == confidences2.numel()
|
||||
assert (locations1 == locations2).long().sum() == locations2.numel()
|
0
src/vision/transforms/__init__.py
Normal file
0
src/vision/transforms/__init__.py
Normal file
410
src/vision/transforms/transforms.py
Normal file
410
src/vision/transforms/transforms.py
Normal file
@ -0,0 +1,410 @@
|
||||
# from https://github.com/amdegroot/ssd.pytorch
|
||||
|
||||
|
||||
import types
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from numpy import random
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
def intersect(box_a, box_b):
|
||||
max_xy = np.minimum(box_a[:, 2:], box_b[2:])
|
||||
min_xy = np.maximum(box_a[:, :2], box_b[:2])
|
||||
inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
|
||||
return inter[:, 0] * inter[:, 1]
|
||||
|
||||
|
||||
def jaccard_numpy(box_a, box_b):
|
||||
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
||||
is simply the intersection over union of two boxes.
|
||||
E.g.:
|
||||
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
|
||||
Args:
|
||||
box_a: Multiple bounding boxes, Shape: [num_boxes,4]
|
||||
box_b: Single bounding box, Shape: [4]
|
||||
Return:
|
||||
jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
|
||||
"""
|
||||
inter = intersect(box_a, box_b)
|
||||
area_a = ((box_a[:, 2] - box_a[:, 0]) *
|
||||
(box_a[:, 3] - box_a[:, 1])) # [A,B]
|
||||
area_b = ((box_b[2] - box_b[0]) *
|
||||
(box_b[3] - box_b[1])) # [A,B]
|
||||
union = area_a + area_b - inter
|
||||
return inter / union # [A,B]
|
||||
|
||||
|
||||
class Compose(object):
|
||||
"""Composes several augmentations together.
|
||||
Args:
|
||||
transforms (List[Transform]): list of transforms to compose.
|
||||
Example:
|
||||
>>> augmentations.Compose([
|
||||
>>> transforms.CenterCrop(10),
|
||||
>>> transforms.ToTensor(),
|
||||
>>> ])
|
||||
"""
|
||||
|
||||
def __init__(self, transforms):
|
||||
self.transforms = transforms
|
||||
|
||||
def __call__(self, img, boxes=None, labels=None):
|
||||
for t in self.transforms:
|
||||
img, boxes, labels = t(img, boxes, labels)
|
||||
return img, boxes, labels
|
||||
|
||||
|
||||
class Lambda(object):
|
||||
"""Applies a lambda as a transform."""
|
||||
|
||||
def __init__(self, lambd):
|
||||
assert isinstance(lambd, types.LambdaType)
|
||||
self.lambd = lambd
|
||||
|
||||
def __call__(self, img, boxes=None, labels=None):
|
||||
return self.lambd(img, boxes, labels)
|
||||
|
||||
|
||||
class ConvertFromInts(object):
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
return image.astype(np.float32), boxes, labels
|
||||
|
||||
|
||||
class SubtractMeans(object):
|
||||
def __init__(self, mean):
|
||||
self.mean = np.array(mean, dtype=np.float32)
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
image = image.astype(np.float32)
|
||||
image -= self.mean
|
||||
return image.astype(np.float32), boxes, labels
|
||||
|
||||
|
||||
class ToAbsoluteCoords(object):
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
height, width, channels = image.shape
|
||||
boxes[:, 0] *= width
|
||||
boxes[:, 2] *= width
|
||||
boxes[:, 1] *= height
|
||||
boxes[:, 3] *= height
|
||||
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class ToPercentCoords(object):
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
height, width, channels = image.shape
|
||||
boxes[:, 0] /= width
|
||||
boxes[:, 2] /= width
|
||||
boxes[:, 1] /= height
|
||||
boxes[:, 3] /= height
|
||||
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class Resize(object):
|
||||
def __init__(self, size=300):
|
||||
self.size = size
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
image = cv2.resize(image, (self.size,
|
||||
self.size))
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomSaturation(object):
|
||||
def __init__(self, lower=0.5, upper=1.5):
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
assert self.upper >= self.lower, "contrast upper must be >= lower."
|
||||
assert self.lower >= 0, "contrast lower must be non-negative."
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if random.randint(2):
|
||||
image[:, :, 1] *= random.uniform(self.lower, self.upper)
|
||||
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomHue(object):
|
||||
def __init__(self, delta=18.0):
|
||||
assert delta >= 0.0 and delta <= 360.0
|
||||
self.delta = delta
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if random.randint(2):
|
||||
image[:, :, 0] += random.uniform(-self.delta, self.delta)
|
||||
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
|
||||
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomLightingNoise(object):
|
||||
def __init__(self):
|
||||
self.perms = ((0, 1, 2), (0, 2, 1),
|
||||
(1, 0, 2), (1, 2, 0),
|
||||
(2, 0, 1), (2, 1, 0))
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if random.randint(2):
|
||||
swap = self.perms[random.randint(len(self.perms))]
|
||||
shuffle = SwapChannels(swap) # shuffle channels
|
||||
image = shuffle(image)
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class ConvertColor(object):
|
||||
def __init__(self, current, transform):
|
||||
self.transform = transform
|
||||
self.current = current
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if self.current == 'BGR' and self.transform == 'HSV':
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
elif self.current == 'RGB' and self.transform == 'HSV':
|
||||
image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
||||
elif self.current == 'BGR' and self.transform == 'RGB':
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
elif self.current == 'HSV' and self.transform == 'BGR':
|
||||
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
|
||||
elif self.current == 'HSV' and self.transform == "RGB":
|
||||
image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomContrast(object):
|
||||
def __init__(self, lower=0.5, upper=1.5):
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
assert self.upper >= self.lower, "contrast upper must be >= lower."
|
||||
assert self.lower >= 0, "contrast lower must be non-negative."
|
||||
|
||||
# expects float image
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if random.randint(2):
|
||||
alpha = random.uniform(self.lower, self.upper)
|
||||
image *= alpha
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomBrightness(object):
|
||||
def __init__(self, delta=32):
|
||||
assert delta >= 0.0
|
||||
assert delta <= 255.0
|
||||
self.delta = delta
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
if random.randint(2):
|
||||
delta = random.uniform(-self.delta, self.delta)
|
||||
image += delta
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class ToCV2Image(object):
|
||||
def __call__(self, tensor, boxes=None, labels=None):
|
||||
return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels
|
||||
|
||||
|
||||
class ToTensor(object):
|
||||
def __call__(self, cvimage, boxes=None, labels=None):
|
||||
return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels
|
||||
|
||||
|
||||
class RandomSampleCrop(object):
|
||||
"""Crop
|
||||
Arguments:
|
||||
img (Image): the image being input during training
|
||||
boxes (Tensor): the original bounding boxes in pt form
|
||||
labels (Tensor): the class labels for each bbox
|
||||
mode (float tuple): the min and max jaccard overlaps
|
||||
Return:
|
||||
(img, boxes, classes)
|
||||
img (Image): the cropped image
|
||||
boxes (Tensor): the adjusted bounding boxes in pt form
|
||||
labels (Tensor): the class labels for each bbox
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.sample_options = (
|
||||
# using entire original input image
|
||||
None,
|
||||
# sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9
|
||||
(0.1, None),
|
||||
(0.3, None),
|
||||
(0.7, None),
|
||||
(0.9, None),
|
||||
# randomly sample a patch
|
||||
(None, None),
|
||||
)
|
||||
|
||||
def __call__(self, image, boxes=None, labels=None):
|
||||
height, width, _ = image.shape
|
||||
while True:
|
||||
# randomly choose a mode
|
||||
# mode = random.choice(self.sample_options) # throws numpy deprecation warning
|
||||
mode = self.sample_options[random.randint(len(self.sample_options))]
|
||||
|
||||
if mode is None:
|
||||
return image, boxes, labels
|
||||
|
||||
min_iou, max_iou = mode
|
||||
if min_iou is None:
|
||||
min_iou = float('-inf')
|
||||
if max_iou is None:
|
||||
max_iou = float('inf')
|
||||
|
||||
# max trails (50)
|
||||
for _ in range(50):
|
||||
current_image = image
|
||||
|
||||
w = random.uniform(0.3 * width, width)
|
||||
h = random.uniform(0.3 * height, height)
|
||||
|
||||
# aspect ratio constraint b/t .5 & 2
|
||||
if h / w < 0.5 or h / w > 2:
|
||||
continue
|
||||
|
||||
left = random.uniform(width - w)
|
||||
top = random.uniform(height - h)
|
||||
|
||||
# convert to integer rect x1,y1,x2,y2
|
||||
rect = np.array([int(left), int(top), int(left + w), int(top + h)])
|
||||
|
||||
# calculate IoU (jaccard overlap) b/t the cropped and gt boxes
|
||||
overlap = jaccard_numpy(boxes, rect)
|
||||
|
||||
# is min and max overlap constraint satisfied? if not try again
|
||||
if overlap.min() < min_iou and max_iou < overlap.max():
|
||||
continue
|
||||
|
||||
# cut the crop from the image
|
||||
current_image = current_image[rect[1]:rect[3], rect[0]:rect[2],
|
||||
:]
|
||||
|
||||
# keep overlap with gt box IF center in sampled patch
|
||||
centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
|
||||
|
||||
# mask in all gt boxes that above and to the left of centers
|
||||
m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
|
||||
|
||||
# mask in all gt boxes that under and to the right of centers
|
||||
m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
|
||||
|
||||
# mask in that both m1 and m2 are true
|
||||
mask = m1 * m2
|
||||
|
||||
# have any valid boxes? try again if not
|
||||
if not mask.any():
|
||||
continue
|
||||
|
||||
# take only matching gt boxes
|
||||
current_boxes = boxes[mask, :].copy()
|
||||
|
||||
# take only matching gt labels
|
||||
current_labels = labels[mask]
|
||||
|
||||
# should we use the box left and top corner or the crop's
|
||||
current_boxes[:, :2] = np.maximum(current_boxes[:, :2],
|
||||
rect[:2])
|
||||
# adjust to crop (by substracting crop's left,top)
|
||||
current_boxes[:, :2] -= rect[:2]
|
||||
|
||||
current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:],
|
||||
rect[2:])
|
||||
# adjust to crop (by substracting crop's left,top)
|
||||
current_boxes[:, 2:] -= rect[:2]
|
||||
|
||||
return current_image, current_boxes, current_labels
|
||||
|
||||
|
||||
class Expand(object):
|
||||
def __init__(self, mean):
|
||||
self.mean = mean
|
||||
|
||||
def __call__(self, image, boxes, labels):
|
||||
if random.randint(2):
|
||||
return image, boxes, labels
|
||||
|
||||
height, width, depth = image.shape
|
||||
ratio = random.uniform(1, 4)
|
||||
left = random.uniform(0, width * ratio - width)
|
||||
top = random.uniform(0, height * ratio - height)
|
||||
|
||||
expand_image = np.zeros(
|
||||
(int(height * ratio), int(width * ratio), depth),
|
||||
dtype=image.dtype)
|
||||
expand_image[:, :, :] = self.mean
|
||||
expand_image[int(top):int(top + height),
|
||||
int(left):int(left + width)] = image
|
||||
image = expand_image
|
||||
|
||||
boxes = boxes.copy()
|
||||
boxes[:, :2] += (int(left), int(top))
|
||||
boxes[:, 2:] += (int(left), int(top))
|
||||
|
||||
return image, boxes, labels
|
||||
|
||||
|
||||
class RandomMirror(object):
|
||||
def __call__(self, image, boxes, classes):
|
||||
_, width, _ = image.shape
|
||||
if random.randint(2):
|
||||
image = image[:, ::-1]
|
||||
boxes = boxes.copy()
|
||||
boxes[:, 0::2] = width - boxes[:, 2::-2]
|
||||
return image, boxes, classes
|
||||
|
||||
|
||||
class SwapChannels(object):
|
||||
"""Transforms a tensorized image by swapping the channels in the order
|
||||
specified in the swap tuple.
|
||||
Args:
|
||||
swaps (int triple): final order of channels
|
||||
eg: (2, 1, 0)
|
||||
"""
|
||||
|
||||
def __init__(self, swaps):
|
||||
self.swaps = swaps
|
||||
|
||||
def __call__(self, image):
|
||||
"""
|
||||
Args:
|
||||
image (Tensor): image tensor to be transformed
|
||||
Return:
|
||||
a tensor with channels swapped according to swap
|
||||
"""
|
||||
# if torch.is_tensor(image):
|
||||
# image = image.data.cpu().numpy()
|
||||
# else:
|
||||
# image = np.array(image)
|
||||
image = image[:, :, self.swaps]
|
||||
return image
|
||||
|
||||
|
||||
class PhotometricDistort(object):
|
||||
def __init__(self):
|
||||
self.pd = [
|
||||
RandomContrast(), # RGB
|
||||
ConvertColor(current="RGB", transform='HSV'), # HSV
|
||||
RandomSaturation(), # HSV
|
||||
RandomHue(), # HSV
|
||||
ConvertColor(current='HSV', transform='RGB'), # RGB
|
||||
RandomContrast() # RGB
|
||||
]
|
||||
self.rand_brightness = RandomBrightness()
|
||||
self.rand_light_noise = RandomLightingNoise()
|
||||
|
||||
def __call__(self, image, boxes, labels):
|
||||
im = image.copy()
|
||||
im, boxes, labels = self.rand_brightness(im, boxes, labels)
|
||||
if random.randint(2):
|
||||
distort = Compose(self.pd[:-1])
|
||||
else:
|
||||
distort = Compose(self.pd[1:])
|
||||
im, boxes, labels = distort(im, boxes, labels)
|
||||
return self.rand_light_noise(im, boxes, labels)
|
1
src/vision/utils/__init__.py
Normal file
1
src/vision/utils/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .misc import *
|
293
src/vision/utils/box_utils.py
Normal file
293
src/vision/utils/box_utils.py
Normal file
@ -0,0 +1,293 @@
|
||||
import collections
|
||||
import itertools
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
|
||||
SSDBoxSizes = collections.namedtuple('SSDBoxSizes', ['min', 'max'])
|
||||
|
||||
SSDSpec = collections.namedtuple('SSDSpec', ['feature_map_size', 'shrinkage', 'box_sizes', 'aspect_ratios'])
|
||||
|
||||
|
||||
def generate_ssd_priors(specs: List[SSDSpec], image_size, clamp=True) -> torch.Tensor:
|
||||
"""Generate SSD Prior Boxes.
|
||||
|
||||
It returns the center, height and width of the priors. The values are relative to the image size
|
||||
Args:
|
||||
specs: SSDSpecs about the shapes of sizes of prior boxes. i.e.
|
||||
specs = [
|
||||
SSDSpec(38, 8, SSDBoxSizes(30, 60), [2]),
|
||||
SSDSpec(19, 16, SSDBoxSizes(60, 111), [2, 3]),
|
||||
SSDSpec(10, 32, SSDBoxSizes(111, 162), [2, 3]),
|
||||
SSDSpec(5, 64, SSDBoxSizes(162, 213), [2, 3]),
|
||||
SSDSpec(3, 100, SSDBoxSizes(213, 264), [2]),
|
||||
SSDSpec(1, 300, SSDBoxSizes(264, 315), [2])
|
||||
]
|
||||
image_size: image size.
|
||||
clamp: if true, clamp the values to make fall between [0.0, 1.0]
|
||||
Returns:
|
||||
priors (num_priors, 4): The prior boxes represented as [[center_x, center_y, w, h]]. All the values
|
||||
are relative to the image size.
|
||||
"""
|
||||
priors = []
|
||||
for spec in specs:
|
||||
scale = image_size / spec.shrinkage
|
||||
for j, i in itertools.product(range(spec.feature_map_size), repeat=2):
|
||||
x_center = (i + 0.5) / scale
|
||||
y_center = (j + 0.5) / scale
|
||||
|
||||
# small sized square box
|
||||
size = spec.box_sizes.min
|
||||
h = w = size / image_size
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w,
|
||||
h
|
||||
])
|
||||
|
||||
# big sized square box
|
||||
size = math.sqrt(spec.box_sizes.max * spec.box_sizes.min)
|
||||
h = w = size / image_size
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w,
|
||||
h
|
||||
])
|
||||
|
||||
# change h/w ratio of the small sized box
|
||||
size = spec.box_sizes.min
|
||||
h = w = size / image_size
|
||||
for ratio in spec.aspect_ratios:
|
||||
ratio = math.sqrt(ratio)
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w * ratio,
|
||||
h / ratio
|
||||
])
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w / ratio,
|
||||
h * ratio
|
||||
])
|
||||
|
||||
priors = torch.tensor(priors)
|
||||
if clamp:
|
||||
torch.clamp(priors, 0.0, 1.0, out=priors)
|
||||
return priors
|
||||
|
||||
|
||||
def convert_locations_to_boxes(locations, priors, center_variance,
|
||||
size_variance):
|
||||
"""Convert regressional location results of SSD into boxes in the form of (center_x, center_y, h, w).
|
||||
|
||||
The conversion:
|
||||
$$predicted\_center * center_variance = \frac {real\_center - prior\_center} {prior\_hw}$$
|
||||
$$exp(predicted\_hw * size_variance) = \frac {real\_hw} {prior\_hw}$$
|
||||
We do it in the inverse direction here.
|
||||
Args:
|
||||
locations (batch_size, num_priors, 4): the regression output of SSD. It will contain the outputs as well.
|
||||
priors (num_priors, 4) or (batch_size/1, num_priors, 4): prior boxes.
|
||||
center_variance: a float used to change the scale of center.
|
||||
size_variance: a float used to change of scale of size.
|
||||
Returns:
|
||||
boxes: priors: [[center_x, center_y, h, w]]. All the values
|
||||
are relative to the image size.
|
||||
"""
|
||||
# priors can have one dimension less.
|
||||
if priors.dim() + 1 == locations.dim():
|
||||
priors = priors.unsqueeze(0)
|
||||
return torch.cat([
|
||||
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
|
||||
torch.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
|
||||
], dim=locations.dim() - 1)
|
||||
|
||||
|
||||
def convert_boxes_to_locations(center_form_boxes, center_form_priors, center_variance, size_variance):
|
||||
# priors can have one dimension less
|
||||
if center_form_priors.dim() + 1 == center_form_boxes.dim():
|
||||
center_form_priors = center_form_priors.unsqueeze(0)
|
||||
return torch.cat([
|
||||
(center_form_boxes[..., :2] - center_form_priors[..., :2]) / center_form_priors[..., 2:] / center_variance,
|
||||
torch.log(center_form_boxes[..., 2:] / center_form_priors[..., 2:]) / size_variance
|
||||
], dim=center_form_boxes.dim() - 1)
|
||||
|
||||
|
||||
def area_of(left_top, right_bottom) -> torch.Tensor:
|
||||
"""Compute the areas of rectangles given two corners.
|
||||
|
||||
Args:
|
||||
left_top (N, 2): left top corner.
|
||||
right_bottom (N, 2): right bottom corner.
|
||||
|
||||
Returns:
|
||||
area (N): return the area.
|
||||
"""
|
||||
hw = torch.clamp(right_bottom - left_top, min=0.0)
|
||||
return hw[..., 0] * hw[..., 1]
|
||||
|
||||
|
||||
def iou_of(boxes0, boxes1, eps=1e-5):
|
||||
"""Return intersection-over-union (Jaccard index) of boxes.
|
||||
|
||||
Args:
|
||||
boxes0 (N, 4): ground truth boxes.
|
||||
boxes1 (N or 1, 4): predicted boxes.
|
||||
eps: a small number to avoid 0 as denominator.
|
||||
Returns:
|
||||
iou (N): IoU values.
|
||||
"""
|
||||
overlap_left_top = torch.max(boxes0[..., :2], boxes1[..., :2])
|
||||
overlap_right_bottom = torch.min(boxes0[..., 2:], boxes1[..., 2:])
|
||||
|
||||
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
|
||||
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
|
||||
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
|
||||
return overlap_area / (area0 + area1 - overlap_area + eps)
|
||||
|
||||
|
||||
def assign_priors(gt_boxes, gt_labels, corner_form_priors,
|
||||
iou_threshold):
|
||||
"""Assign ground truth boxes and targets to priors.
|
||||
|
||||
Args:
|
||||
gt_boxes (num_targets, 4): ground truth boxes.
|
||||
gt_labels (num_targets): labels of targets.
|
||||
priors (num_priors, 4): corner form priors
|
||||
Returns:
|
||||
boxes (num_priors, 4): real values for priors.
|
||||
labels (num_priros): labels for priors.
|
||||
"""
|
||||
# size: num_priors x num_targets
|
||||
ious = iou_of(gt_boxes.unsqueeze(0), corner_form_priors.unsqueeze(1))
|
||||
# size: num_priors
|
||||
best_target_per_prior, best_target_per_prior_index = ious.max(1)
|
||||
# size: num_targets
|
||||
best_prior_per_target, best_prior_per_target_index = ious.max(0)
|
||||
|
||||
for target_index, prior_index in enumerate(best_prior_per_target_index):
|
||||
best_target_per_prior_index[prior_index] = target_index
|
||||
# 2.0 is used to make sure every target has a prior assigned
|
||||
best_target_per_prior.index_fill_(0, best_prior_per_target_index, 2)
|
||||
# size: num_priors
|
||||
labels = gt_labels[best_target_per_prior_index]
|
||||
labels[best_target_per_prior < iou_threshold] = 0 # the backgournd id
|
||||
boxes = gt_boxes[best_target_per_prior_index]
|
||||
return boxes, labels
|
||||
|
||||
|
||||
def hard_negative_mining(loss, labels, neg_pos_ratio):
|
||||
"""
|
||||
It used to suppress the presence of a large number of negative prediction.
|
||||
It works on image level not batch level.
|
||||
For any example/image, it keeps all the positive predictions and
|
||||
cut the number of negative predictions to make sure the ratio
|
||||
between the negative examples and positive examples is no more
|
||||
the given ratio for an image.
|
||||
|
||||
Args:
|
||||
loss (N, num_priors): the loss for each example.
|
||||
labels (N, num_priors): the labels.
|
||||
neg_pos_ratio: the ratio between the negative examples and positive examples.
|
||||
"""
|
||||
pos_mask = labels > 0
|
||||
num_pos = pos_mask.long().sum(dim=1, keepdim=True)
|
||||
num_neg = num_pos * neg_pos_ratio
|
||||
|
||||
loss[pos_mask] = -math.inf
|
||||
_, indexes = loss.sort(dim=1, descending=True)
|
||||
_, orders = indexes.sort(dim=1)
|
||||
neg_mask = orders < num_neg
|
||||
return pos_mask | neg_mask
|
||||
|
||||
|
||||
def center_form_to_corner_form(locations):
|
||||
return torch.cat([locations[..., :2] - locations[..., 2:] / 2,
|
||||
locations[..., :2] + locations[..., 2:] / 2], locations.dim() - 1)
|
||||
|
||||
|
||||
def corner_form_to_center_form(boxes):
|
||||
return torch.cat([
|
||||
(boxes[..., :2] + boxes[..., 2:]) / 2,
|
||||
boxes[..., 2:] - boxes[..., :2]
|
||||
], boxes.dim() - 1)
|
||||
|
||||
|
||||
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
|
||||
"""
|
||||
|
||||
Args:
|
||||
box_scores (N, 5): boxes in corner-form and probabilities.
|
||||
iou_threshold: intersection over union threshold.
|
||||
top_k: keep top_k results. If k <= 0, keep all the results.
|
||||
candidate_size: only consider the candidates with the highest scores.
|
||||
Returns:
|
||||
picked: a list of indexes of the kept boxes
|
||||
"""
|
||||
scores = box_scores[:, -1]
|
||||
boxes = box_scores[:, :-1]
|
||||
picked = []
|
||||
_, indexes = scores.sort(descending=True)
|
||||
indexes = indexes[:candidate_size]
|
||||
while len(indexes) > 0:
|
||||
current = indexes[0]
|
||||
picked.append(current.item())
|
||||
if 0 < top_k == len(picked) or len(indexes) == 1:
|
||||
break
|
||||
current_box = boxes[current, :]
|
||||
indexes = indexes[1:]
|
||||
rest_boxes = boxes[indexes, :]
|
||||
iou = iou_of(
|
||||
rest_boxes,
|
||||
current_box.unsqueeze(0),
|
||||
)
|
||||
indexes = indexes[iou <= iou_threshold]
|
||||
|
||||
return box_scores[picked, :]
|
||||
|
||||
|
||||
def nms(box_scores, nms_method=None, score_threshold=None, iou_threshold=None,
|
||||
sigma=0.5, top_k=-1, candidate_size=200):
|
||||
if nms_method == "soft":
|
||||
return soft_nms(box_scores, score_threshold, sigma, top_k)
|
||||
else:
|
||||
return hard_nms(box_scores, iou_threshold, top_k, candidate_size=candidate_size)
|
||||
|
||||
|
||||
def soft_nms(box_scores, score_threshold, sigma=0.5, top_k=-1):
|
||||
"""Soft NMS implementation.
|
||||
|
||||
References:
|
||||
https://arxiv.org/abs/1704.04503
|
||||
https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/cython_nms.pyx
|
||||
|
||||
Args:
|
||||
box_scores (N, 5): boxes in corner-form and probabilities.
|
||||
score_threshold: boxes with scores less than value are not considered.
|
||||
sigma: the parameter in score re-computation.
|
||||
scores[i] = scores[i] * exp(-(iou_i)^2 / simga)
|
||||
top_k: keep top_k results. If k <= 0, keep all the results.
|
||||
Returns:
|
||||
picked_box_scores (K, 5): results of NMS.
|
||||
"""
|
||||
picked_box_scores = []
|
||||
while box_scores.size(0) > 0:
|
||||
max_score_index = torch.argmax(box_scores[:, 4])
|
||||
cur_box_prob = torch.tensor(box_scores[max_score_index, :])
|
||||
picked_box_scores.append(cur_box_prob)
|
||||
if len(picked_box_scores) == top_k > 0 or box_scores.size(0) == 1:
|
||||
break
|
||||
cur_box = cur_box_prob[:-1]
|
||||
box_scores[max_score_index, :] = box_scores[-1, :]
|
||||
box_scores = box_scores[:-1, :]
|
||||
ious = iou_of(cur_box.unsqueeze(0), box_scores[:, :-1])
|
||||
box_scores[:, -1] = box_scores[:, -1] * torch.exp(-(ious * ious) / sigma)
|
||||
box_scores = box_scores[box_scores[:, -1] > score_threshold, :]
|
||||
if len(picked_box_scores) > 0:
|
||||
return torch.stack(picked_box_scores)
|
||||
else:
|
||||
return torch.tensor([])
|
238
src/vision/utils/box_utils_numpy.py
Normal file
238
src/vision/utils/box_utils_numpy.py
Normal file
@ -0,0 +1,238 @@
|
||||
import itertools
|
||||
import math
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .box_utils import SSDSpec
|
||||
|
||||
|
||||
def generate_ssd_priors(specs: List[SSDSpec], image_size, clamp=True):
|
||||
"""Generate SSD Prior Boxes.
|
||||
|
||||
It returns the center, height and width of the priors. The values are relative to the image size
|
||||
Args:
|
||||
specs: SSDSpecs about the shapes of sizes of prior boxes. i.e.
|
||||
specs = [
|
||||
SSDSpec(38, 8, SSDBoxSizes(30, 60), [2]),
|
||||
SSDSpec(19, 16, SSDBoxSizes(60, 111), [2, 3]),
|
||||
SSDSpec(10, 32, SSDBoxSizes(111, 162), [2, 3]),
|
||||
SSDSpec(5, 64, SSDBoxSizes(162, 213), [2, 3]),
|
||||
SSDSpec(3, 100, SSDBoxSizes(213, 264), [2]),
|
||||
SSDSpec(1, 300, SSDBoxSizes(264, 315), [2])
|
||||
]
|
||||
image_size: image size.
|
||||
clamp: if true, clamp the values to make fall between [0.0, 1.0]
|
||||
Returns:
|
||||
priors (num_priors, 4): The prior boxes represented as [[center_x, center_y, w, h]]. All the values
|
||||
are relative to the image size.
|
||||
"""
|
||||
priors = []
|
||||
for spec in specs:
|
||||
scale = image_size / spec.shrinkage
|
||||
for j, i in itertools.product(range(spec.feature_map_size), repeat=2):
|
||||
x_center = (i + 0.5) / scale
|
||||
y_center = (j + 0.5) / scale
|
||||
|
||||
# small sized square box
|
||||
size = spec.box_sizes.min
|
||||
h = w = size / image_size
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w,
|
||||
h
|
||||
])
|
||||
|
||||
# big sized square box
|
||||
size = math.sqrt(spec.box_sizes.max * spec.box_sizes.min)
|
||||
h = w = size / image_size
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w,
|
||||
h
|
||||
])
|
||||
|
||||
# change h/w ratio of the small sized box
|
||||
size = spec.box_sizes.min
|
||||
h = w = size / image_size
|
||||
for ratio in spec.aspect_ratios:
|
||||
ratio = math.sqrt(ratio)
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w * ratio,
|
||||
h / ratio
|
||||
])
|
||||
priors.append([
|
||||
x_center,
|
||||
y_center,
|
||||
w / ratio,
|
||||
h * ratio
|
||||
])
|
||||
|
||||
priors = np.array(priors, dtype=np.float32)
|
||||
if clamp:
|
||||
np.clip(priors, 0.0, 1.0, out=priors)
|
||||
return priors
|
||||
|
||||
|
||||
def convert_locations_to_boxes(locations, priors, center_variance,
|
||||
size_variance):
|
||||
"""Convert regressional location results of SSD into boxes in the form of (center_x, center_y, h, w).
|
||||
|
||||
The conversion:
|
||||
$$predicted\_center * center_variance = \frac {real\_center - prior\_center} {prior\_hw}$$
|
||||
$$exp(predicted\_hw * size_variance) = \frac {real\_hw} {prior\_hw}$$
|
||||
We do it in the inverse direction here.
|
||||
Args:
|
||||
locations (batch_size, num_priors, 4): the regression output of SSD. It will contain the outputs as well.
|
||||
priors (num_priors, 4) or (batch_size/1, num_priors, 4): prior boxes.
|
||||
center_variance: a float used to change the scale of center.
|
||||
size_variance: a float used to change of scale of size.
|
||||
Returns:
|
||||
boxes: priors: [[center_x, center_y, h, w]]. All the values
|
||||
are relative to the image size.
|
||||
"""
|
||||
# priors can have one dimension less.
|
||||
if len(priors.shape) + 1 == len(locations.shape):
|
||||
priors = np.expand_dims(priors, 0)
|
||||
return np.concatenate([
|
||||
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
|
||||
np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
|
||||
], axis=len(locations.shape) - 1)
|
||||
|
||||
|
||||
def convert_boxes_to_locations(center_form_boxes, center_form_priors, center_variance, size_variance):
|
||||
# priors can have one dimension less
|
||||
if len(center_form_priors.shape) + 1 == len(center_form_boxes.shape):
|
||||
center_form_priors = np.expand_dims(center_form_priors, 0)
|
||||
return np.concatenate([
|
||||
(center_form_boxes[..., :2] - center_form_priors[..., :2]) / center_form_priors[..., 2:] / center_variance,
|
||||
np.log(center_form_boxes[..., 2:] / center_form_priors[..., 2:]) / size_variance
|
||||
], axis=len(center_form_boxes.shape) - 1)
|
||||
|
||||
|
||||
def area_of(left_top, right_bottom):
|
||||
"""Compute the areas of rectangles given two corners.
|
||||
|
||||
Args:
|
||||
left_top (N, 2): left top corner.
|
||||
right_bottom (N, 2): right bottom corner.
|
||||
|
||||
Returns:
|
||||
area (N): return the area.
|
||||
"""
|
||||
hw = np.clip(right_bottom - left_top, 0.0, None)
|
||||
return hw[..., 0] * hw[..., 1]
|
||||
|
||||
|
||||
def iou_of(boxes0, boxes1, eps=1e-5):
|
||||
"""Return intersection-over-union (Jaccard index) of boxes.
|
||||
|
||||
Args:
|
||||
boxes0 (N, 4): ground truth boxes.
|
||||
boxes1 (N or 1, 4): predicted boxes.
|
||||
eps: a small number to avoid 0 as denominator.
|
||||
Returns:
|
||||
iou (N): IoU values.
|
||||
"""
|
||||
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
|
||||
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
|
||||
|
||||
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
|
||||
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
|
||||
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
|
||||
return overlap_area / (area0 + area1 - overlap_area + eps)
|
||||
|
||||
|
||||
def center_form_to_corner_form(locations):
|
||||
return np.concatenate([locations[..., :2] - locations[..., 2:] / 2,
|
||||
locations[..., :2] + locations[..., 2:] / 2], len(locations.shape) - 1)
|
||||
|
||||
|
||||
def corner_form_to_center_form(boxes):
|
||||
return np.concatenate([
|
||||
(boxes[..., :2] + boxes[..., 2:]) / 2,
|
||||
boxes[..., 2:] - boxes[..., :2]
|
||||
], len(boxes.shape) - 1)
|
||||
|
||||
|
||||
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
|
||||
"""
|
||||
|
||||
Args:
|
||||
box_scores (N, 5): boxes in corner-form and probabilities.
|
||||
iou_threshold: intersection over union threshold.
|
||||
top_k: keep top_k results. If k <= 0, keep all the results.
|
||||
candidate_size: only consider the candidates with the highest scores.
|
||||
Returns:
|
||||
picked: a list of indexes of the kept boxes
|
||||
"""
|
||||
scores = box_scores[:, -1]
|
||||
boxes = box_scores[:, :-1]
|
||||
picked = []
|
||||
# _, indexes = scores.sort(descending=True)
|
||||
indexes = np.argsort(scores)
|
||||
# indexes = indexes[:candidate_size]
|
||||
indexes = indexes[-candidate_size:]
|
||||
while len(indexes) > 0:
|
||||
# current = indexes[0]
|
||||
current = indexes[-1]
|
||||
picked.append(current)
|
||||
if 0 < top_k == len(picked) or len(indexes) == 1:
|
||||
break
|
||||
current_box = boxes[current, :]
|
||||
# indexes = indexes[1:]
|
||||
indexes = indexes[:-1]
|
||||
rest_boxes = boxes[indexes, :]
|
||||
iou = iou_of(
|
||||
rest_boxes,
|
||||
np.expand_dims(current_box, axis=0),
|
||||
)
|
||||
indexes = indexes[iou <= iou_threshold]
|
||||
|
||||
return box_scores[picked, :]
|
||||
|
||||
# def nms(box_scores, nms_method=None, score_threshold=None, iou_threshold=None,
|
||||
# sigma=0.5, top_k=-1, candidate_size=200):
|
||||
# if nms_method == "soft":
|
||||
# return soft_nms(box_scores, score_threshold, sigma, top_k)
|
||||
# else:
|
||||
# return hard_nms(box_scores, iou_threshold, top_k, candidate_size=candidate_size)
|
||||
|
||||
#
|
||||
# def soft_nms(box_scores, score_threshold, sigma=0.5, top_k=-1):
|
||||
# """Soft NMS implementation.
|
||||
#
|
||||
# References:
|
||||
# https://arxiv.org/abs/1704.04503
|
||||
# https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/cython_nms.pyx
|
||||
#
|
||||
# Args:
|
||||
# box_scores (N, 5): boxes in corner-form and probabilities.
|
||||
# score_threshold: boxes with scores less than value are not considered.
|
||||
# sigma: the parameter in score re-computation.
|
||||
# scores[i] = scores[i] * exp(-(iou_i)^2 / simga)
|
||||
# top_k: keep top_k results. If k <= 0, keep all the results.
|
||||
# Returns:
|
||||
# picked_box_scores (K, 5): results of NMS.
|
||||
# """
|
||||
# picked_box_scores = []
|
||||
# while box_scores.size(0) > 0:
|
||||
# max_score_index = torch.argmax(box_scores[:, 4])
|
||||
# cur_box_prob = torch.tensor(box_scores[max_score_index, :])
|
||||
# picked_box_scores.append(cur_box_prob)
|
||||
# if len(picked_box_scores) == top_k > 0 or box_scores.size(0) == 1:
|
||||
# break
|
||||
# cur_box = cur_box_prob[:-1]
|
||||
# box_scores[max_score_index, :] = box_scores[-1, :]
|
||||
# box_scores = box_scores[:-1, :]
|
||||
# ious = iou_of(cur_box.unsqueeze(0), box_scores[:, :-1])
|
||||
# box_scores[:, -1] = box_scores[:, -1] * torch.exp(-(ious * ious) / sigma)
|
||||
# box_scores = box_scores[box_scores[:, -1] > score_threshold, :]
|
||||
# if len(picked_box_scores) > 0:
|
||||
# return torch.stack(picked_box_scores)
|
||||
# else:
|
||||
# return torch.tensor([])
|
32
src/vision/utils/measurements.py
Normal file
32
src/vision/utils/measurements.py
Normal file
@ -0,0 +1,32 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def compute_average_precision(precision, recall):
|
||||
"""
|
||||
It computes average precision based on the definition of Pascal Competition. It computes the under curve area
|
||||
of precision and recall. Recall follows the normal definition. Precision is a variant.
|
||||
pascal_precision[i] = typical_precision[i:].max()
|
||||
"""
|
||||
# identical but faster version of new_precision[i] = old_precision[i:].max()
|
||||
precision = np.concatenate([[0.0], precision, [0.0]])
|
||||
for i in range(len(precision) - 1, 0, -1):
|
||||
precision[i - 1] = np.maximum(precision[i - 1], precision[i])
|
||||
|
||||
# find the index where the value changes
|
||||
recall = np.concatenate([[0.0], recall, [1.0]])
|
||||
changing_points = np.where(recall[1:] != recall[:-1])[0]
|
||||
|
||||
# compute under curve area
|
||||
areas = (recall[changing_points + 1] - recall[changing_points]) * precision[changing_points + 1]
|
||||
return areas.sum()
|
||||
|
||||
|
||||
def compute_voc2007_average_precision(precision, recall):
|
||||
ap = 0.
|
||||
for t in np.arange(0., 1.1, 0.1):
|
||||
if np.sum(recall >= t) == 0:
|
||||
p = 0
|
||||
else:
|
||||
p = np.max(precision[recall >= t])
|
||||
ap = ap + p / 11.
|
||||
return ap
|
46
src/vision/utils/misc.py
Normal file
46
src/vision/utils/misc.py
Normal file
@ -0,0 +1,46 @@
|
||||
import time
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def str2bool(s):
|
||||
return s.lower() in ('true', '1')
|
||||
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
self.clock = {}
|
||||
|
||||
def start(self, key="default"):
|
||||
self.clock[key] = time.time()
|
||||
|
||||
def end(self, key="default"):
|
||||
if key not in self.clock:
|
||||
raise Exception(f"{key} is not in the clock.")
|
||||
interval = time.time() - self.clock[key]
|
||||
del self.clock[key]
|
||||
return interval
|
||||
|
||||
|
||||
def save_checkpoint(epoch, net_state_dict, optimizer_state_dict, best_score, checkpoint_path, model_path):
|
||||
torch.save({
|
||||
'epoch': epoch,
|
||||
'model': net_state_dict,
|
||||
'optimizer': optimizer_state_dict,
|
||||
'best_score': best_score
|
||||
}, checkpoint_path)
|
||||
torch.save(net_state_dict, model_path)
|
||||
|
||||
|
||||
def load_checkpoint(checkpoint_path):
|
||||
return torch.load(checkpoint_path)
|
||||
|
||||
|
||||
def freeze_net_layers(net):
|
||||
for param in net.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
def store_labels(path, labels):
|
||||
with open(path, "w") as f:
|
||||
f.write("\n".join(labels))
|
82
src/vision/utils/model_book.py
Normal file
82
src/vision/utils/model_book.py
Normal file
@ -0,0 +1,82 @@
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class ModelBook:
|
||||
"""Maintain the mapping between modules and their paths.
|
||||
|
||||
Example:
|
||||
book = ModelBook(model_ft)
|
||||
for p, m in book.conv2d_modules():
|
||||
print('path:', p, 'num of filters:', m.out_channels)
|
||||
assert m is book.get_module(p)
|
||||
"""
|
||||
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
self._modules = OrderedDict()
|
||||
self._paths = OrderedDict()
|
||||
path = []
|
||||
self._construct(self._model, path)
|
||||
|
||||
def _construct(self, module, path):
|
||||
if not module._modules:
|
||||
return
|
||||
for name, m in module._modules.items():
|
||||
cur_path = tuple(path + [name])
|
||||
self._paths[m] = cur_path
|
||||
self._modules[cur_path] = m
|
||||
self._construct(m, path + [name])
|
||||
|
||||
def conv2d_modules(self):
|
||||
return self.modules(nn.Conv2d)
|
||||
|
||||
def linear_modules(self):
|
||||
return self.modules(nn.Linear)
|
||||
|
||||
def modules(self, module_type=None):
|
||||
for p, m in self._modules.items():
|
||||
if not module_type or isinstance(m, module_type):
|
||||
yield p, m
|
||||
|
||||
def num_of_conv2d_modules(self):
|
||||
return self.num_of_modules(nn.Conv2d)
|
||||
|
||||
def num_of_conv2d_filters(self):
|
||||
"""Return the sum of out_channels of all conv2d layers.
|
||||
|
||||
Here we treat the sub weight with size of [in_channels, h, w] as a single filter.
|
||||
"""
|
||||
num_filters = 0
|
||||
for _, m in self.conv2d_modules():
|
||||
num_filters += m.out_channels
|
||||
return num_filters
|
||||
|
||||
def num_of_linear_modules(self):
|
||||
return self.num_of_modules(nn.Linear)
|
||||
|
||||
def num_of_linear_filters(self):
|
||||
num_filters = 0
|
||||
for _, m in self.linear_modules():
|
||||
num_filters += m.out_features
|
||||
return num_filters
|
||||
|
||||
def num_of_modules(self, module_type=None):
|
||||
num = 0
|
||||
for p, m in self._modules.items():
|
||||
if not module_type or isinstance(m, module_type):
|
||||
num += 1
|
||||
return num
|
||||
|
||||
def get_module(self, path):
|
||||
return self._modules.get(path)
|
||||
|
||||
def get_path(self, module):
|
||||
return self._paths.get(module)
|
||||
|
||||
def update(self, path, module):
|
||||
old_module = self._modules[path]
|
||||
del self._paths[old_module]
|
||||
self._paths[module] = path
|
||||
self._modules[path] = module
|
Reference in New Issue
Block a user