micropython/stm/audio.c
2014-03-08 15:14:53 +00:00

149 lines
4.0 KiB
C

#include <stdint.h>
#include <string.h>
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
#include "stm32f4xx_dac.h"
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "parse.h"
#include "obj.h"
#include "runtime.h"
#include "audio.h"
#define SAMPLE_BUF_SIZE (32)
// sample_buf_in is always the same or ahead of sample_buf_out
// when they are the same, there are no more samples left to process
// in this scheme, there is always 1 unusable byte in the buffer, just before sample_buf_out
int sample_buf_in;
int sample_buf_out;
byte sample_buf[SAMPLE_BUF_SIZE];
bool audio_is_full(void) {
return ((sample_buf_in + 1) % SAMPLE_BUF_SIZE) == sample_buf_out;
}
void audio_fill(byte sample) {
sample_buf[sample_buf_in] = sample;
sample_buf_in = (sample_buf_in + 1) % SAMPLE_BUF_SIZE;
// enable interrupt
}
void audio_drain(void) {
if (sample_buf_in == sample_buf_out) {
// buffer is empty; disable interrupt
} else {
// buffer has a sample; output it
byte sample = sample_buf[sample_buf_out];
DAC_SetChannel2Data(DAC_Align_8b_R, sample);
sample_buf_out = (sample_buf_out + 1) % SAMPLE_BUF_SIZE;
}
}
/******************************************************************************/
// Micro Python bindings
typedef struct _pyb_audio_t {
mp_obj_base_t base;
int dac_id; // 1 or 2
} pyb_audio_t;
// direct access to DAC
mp_obj_t pyb_audio_dac(mp_obj_t self_in, mp_obj_t val) {
pyb_audio_t *self = self_in;
if (self->dac_id == 1) {
DAC_SetChannel1Data(DAC_Align_8b_R, mp_obj_get_int(val));
} else {
DAC_SetChannel2Data(DAC_Align_8b_R, mp_obj_get_int(val));
}
return mp_const_none;
}
mp_obj_t pyb_audio_is_full(mp_obj_t self_in) {
if (audio_is_full()) {
return mp_const_true;
} else {
return mp_const_false;
}
}
mp_obj_t pyb_audio_fill(mp_obj_t self_in, mp_obj_t val) {
audio_fill(mp_obj_get_int(val));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_audio_dac_obj, pyb_audio_dac);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_audio_is_full_obj, pyb_audio_is_full);
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_audio_fill_obj, pyb_audio_fill);
STATIC const mp_method_t pyb_audio_methods[] = {
{ "dac", &pyb_audio_dac_obj },
{ "is_full", &pyb_audio_is_full_obj },
{ "fill", &pyb_audio_fill_obj },
{ NULL, NULL },
};
STATIC const mp_obj_type_t pyb_audio_type = {
{ &mp_type_type },
.name = MP_QSTR_,
.methods = pyb_audio_methods,
};
STATIC const pyb_audio_t pyb_audio_channel_1 = {{&pyb_audio_type}, 1};
STATIC const pyb_audio_t pyb_audio_channel_2 = {{&pyb_audio_type}, 2};
// create the audio object
// currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2)
STATIC mp_obj_t pyb_Audio(mp_obj_t id) {
// DAC peripheral clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
int dac_id = mp_obj_get_int(id);
uint pin;
uint channel;
mp_obj_t dac_obj;
if (dac_id == 1) {
pin = GPIO_Pin_4;
channel = DAC_Channel_1;
dac_obj = (mp_obj_t)&pyb_audio_channel_1;
} else {
pin = GPIO_Pin_5;
channel = DAC_Channel_2;
dac_obj = (mp_obj_t)&pyb_audio_channel_2;
}
// DAC channel configuration
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// DAC channel Configuration
DAC_InitTypeDef DAC_InitStructure;
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(channel, &DAC_InitStructure);
// Enable DAC Channel
DAC_Cmd(channel, ENABLE);
// from now on use DAC_SetChannel[12]Data to trigger a conversion
sample_buf_in = 0;
sample_buf_out = 0;
// return static object
return dac_obj;
}
MP_DEFINE_CONST_FUN_OBJ_1(pyb_Audio_obj, pyb_Audio);