micropython/ports/stm32/flashbdev.c
Ned Konz 8c214ed200 stm32: Extended flash filesystem space to 512K on H743 boards.
The H743 has equal sized pages of 128k, which means the filesystem doesn't
need to be near the beginning.  This commit moves the filesystem to the
very end of flash, and extends it to 512k (4 pages).

Signed-off-by: Damien George <damien@micropython.org>
2021-09-21 18:02:14 +10:00

342 lines
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/mperrno.h"
#include "irq.h"
#include "led.h"
#include "flash.h"
#include "storage.h"
#if MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE
// Here we try to automatically configure the location and size of the flash
// pages to use for the internal storage. We also configure the location of the
// cache used for writing.
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
// enable this to get an extra 64k of storage (uses the last sector of the flash)
#if 0
#define FLASH_MEM_SEG2_START_ADDR (0x080e0000) // sector 11
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 11: 128k
#endif
#elif defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F412Zx) || defined(STM32F446xx)
STATIC byte flash_cache_mem[0x4000] __attribute__((aligned(4))); // 16k
#define CACHE_MEM_START_ADDR (&flash_cache_mem[0])
#define FLASH_SECTOR_SIZE_MAX (0x4000) // 16k max due to size of cache buffer
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (128) // sectors 1,2,3,4: 16k+16k+16k+16k(of 64k)=64k
#elif defined(STM32F413xx)
#define CACHE_MEM_START_ADDR (0x10000000) // SRAM2 data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of SRAM2
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (352) // sectors 1,2,3,4,5: 16k+16k+16k+64k+64k(of 128k)=176k
#define FLASH_MEM_SEG2_START_ADDR (0x08040000) // sector 6
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 6: 64k(of 128k). Filesystem 176K + 64K = 240K
#elif defined(STM32F429xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
#elif defined(STM32F439xx)
#define CACHE_MEM_START_ADDR (0x10000000) // CCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max, size of CCM
#define FLASH_MEM_SEG1_START_ADDR (0x08100000) // sector 12
#define FLASH_MEM_SEG1_NUM_BLOCKS (384) // sectors 12,13,14,15,16,17: 16k+16k+16k+16k+64k+64k(of 128k)=192k
#define FLASH_MEM_SEG2_START_ADDR (0x08140000) // sector 18
#define FLASH_MEM_SEG2_NUM_BLOCKS (128) // sector 18: 64k(of 128k)
#elif defined(STM32F722xx) || defined(STM32F723xx) || defined(STM32F732xx) || defined(STM32F733xx)
#define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x10000) // 64k max
#define FLASH_MEM_SEG1_START_ADDR (0x08004000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (224) // sectors 1,2,3,4: 16k+16k+16k+64k=112k
#elif defined(STM32F746xx) || defined(STM32F765xx) || defined(STM32F767xx) || defined(STM32F769xx)
// The STM32F746 doesn't really have CCRAM, so we use the 64K DTCM for this.
#define CACHE_MEM_START_ADDR (0x20000000) // DTCM data RAM, 64k
#define FLASH_SECTOR_SIZE_MAX (0x08000) // 32k max
#define FLASH_MEM_SEG1_START_ADDR (0x08008000) // sector 1
#define FLASH_MEM_SEG1_NUM_BLOCKS (192) // sectors 1,2,3: 32k+32k+32=96k
#elif defined(STM32H743xx)
// The STM32H743 flash sectors are 128K, with locations defined in the linker script
extern uint8_t _flash_fs_start;
extern uint8_t _flash_fs_end;
extern uint8_t _ram_fs_cache_start[];
extern uint8_t _ram_fs_cache_end[];
#define CACHE_MEM_START_ADDR ((uintptr_t)&_ram_fs_cache_start[0])
#define FLASH_SECTOR_SIZE_MAX (&_ram_fs_cache_end[0] - &_ram_fs_cache_start[0])
#define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512)
#elif defined(STM32L432xx) || \
defined(STM32L451xx) || defined(STM32L452xx) || defined(STM32L462xx) || \
defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L496xx) || \
defined(STM32WB)
// The STM32L4xx doesn't have CCRAM, so we use SRAM2 for this, although
// actual location and size is defined by the linker script.
extern uint8_t _flash_fs_start;
extern uint8_t _flash_fs_end;
extern uint8_t _ram_fs_cache_start[]; // size determined by linker file
extern uint8_t _ram_fs_cache_end[];
#define CACHE_MEM_START_ADDR ((uintptr_t)&_ram_fs_cache_start[0])
#define FLASH_SECTOR_SIZE_MAX (&_ram_fs_cache_end[0] - &_ram_fs_cache_start[0]) // 2k max
#define FLASH_MEM_SEG1_START_ADDR ((long)&_flash_fs_start)
#define FLASH_MEM_SEG1_NUM_BLOCKS ((&_flash_fs_end - &_flash_fs_start) / 512)
#else
#error "no internal flash storage support for this MCU"
#endif
#if !defined(FLASH_MEM_SEG2_START_ADDR)
#define FLASH_MEM_SEG2_START_ADDR (0) // no second segment
#define FLASH_MEM_SEG2_NUM_BLOCKS (0) // no second segment
#endif
#define FLASH_FLAG_DIRTY (1)
#define FLASH_FLAG_FORCE_WRITE (2)
#define FLASH_FLAG_ERASED (4)
static __IO uint8_t flash_flags = 0;
static uint32_t flash_cache_sector_id;
static uint32_t flash_cache_sector_start;
static uint32_t flash_cache_sector_size;
static uint32_t flash_tick_counter_last_write;
static void flash_bdev_irq_handler(void);
int32_t flash_bdev_ioctl(uint32_t op, uint32_t arg) {
(void)arg;
switch (op) {
case BDEV_IOCTL_INIT:
flash_flags = 0;
flash_cache_sector_id = 0;
flash_tick_counter_last_write = 0;
return 0;
case BDEV_IOCTL_NUM_BLOCKS:
// Units are FLASH_BLOCK_SIZE
return FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS;
case BDEV_IOCTL_IRQ_HANDLER:
flash_bdev_irq_handler();
return 0;
case BDEV_IOCTL_SYNC: {
uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access
if (flash_flags & FLASH_FLAG_DIRTY) {
flash_flags |= FLASH_FLAG_FORCE_WRITE;
while (flash_flags & FLASH_FLAG_DIRTY) {
flash_bdev_irq_handler();
}
}
restore_irq_pri(basepri);
return 0;
}
}
return -MP_EINVAL;
}
static uint8_t *flash_cache_get_addr_for_write(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
int32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_sector_size > FLASH_SECTOR_SIZE_MAX) {
flash_sector_size = FLASH_SECTOR_SIZE_MAX;
}
if (flash_cache_sector_id != flash_sector_id) {
flash_bdev_ioctl(BDEV_IOCTL_SYNC, 0);
memcpy((void *)CACHE_MEM_START_ADDR, (const void *)flash_sector_start, flash_sector_size);
flash_cache_sector_id = flash_sector_id;
flash_cache_sector_start = flash_sector_start;
flash_cache_sector_size = flash_sector_size;
}
flash_flags |= FLASH_FLAG_DIRTY;
led_state(PYB_LED_RED, 1); // indicate a dirty cache with LED on
flash_tick_counter_last_write = HAL_GetTick();
return (uint8_t *)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
static uint8_t *flash_cache_get_addr_for_read(uint32_t flash_addr) {
uint32_t flash_sector_start;
uint32_t flash_sector_size;
int32_t flash_sector_id = flash_get_sector_info(flash_addr, &flash_sector_start, &flash_sector_size);
if (flash_cache_sector_id == flash_sector_id) {
// in cache, copy from there
return (uint8_t *)CACHE_MEM_START_ADDR + flash_addr - flash_sector_start;
}
// not in cache, copy straight from flash
return (uint8_t *)flash_addr;
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (block < FLASH_MEM_SEG1_NUM_BLOCKS) {
return FLASH_MEM_SEG1_START_ADDR + block * FLASH_BLOCK_SIZE;
}
if (block < FLASH_MEM_SEG1_NUM_BLOCKS + FLASH_MEM_SEG2_NUM_BLOCKS) {
return FLASH_MEM_SEG2_START_ADDR + (block - FLASH_MEM_SEG1_NUM_BLOCKS) * FLASH_BLOCK_SIZE;
}
// can add more flash segments here if needed, following above pattern
// bad block
return -1;
}
static void flash_bdev_irq_handler(void) {
if (!(flash_flags & FLASH_FLAG_DIRTY)) {
return;
}
// This code uses interrupts to erase the flash
/*
if (flash_erase_state == 0) {
flash_erase_it(flash_cache_sector_start, flash_cache_sector_size / 4);
flash_erase_state = 1;
return;
}
if (flash_erase_state == 1) {
// wait for erase
// TODO add timeout
#define flash_erase_done() (__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) == RESET)
if (!flash_erase_done()) {
return;
}
flash_erase_state = 2;
}
*/
// This code erases the flash directly, waiting for it to finish
if (!(flash_flags & FLASH_FLAG_ERASED)) {
flash_erase(flash_cache_sector_start, flash_cache_sector_size / 4);
flash_flags |= FLASH_FLAG_ERASED;
return;
}
// If not a forced write, wait at least 5 seconds after last write to flush
// On file close and flash unmount we get a forced write, so we can afford to wait a while
if ((flash_flags & FLASH_FLAG_FORCE_WRITE) || HAL_GetTick() - flash_tick_counter_last_write >= 5000) {
// sync the cache RAM buffer by writing it to the flash page
flash_write(flash_cache_sector_start, (const uint32_t *)CACHE_MEM_START_ADDR, flash_cache_sector_size / 4);
// clear the flash flags now that we have a clean cache
flash_flags = 0;
// indicate a clean cache with LED off
led_state(PYB_LED_RED, 0);
}
}
bool flash_bdev_readblock(uint8_t *dest, uint32_t block) {
// non-MBR block, get data from flash memory, possibly via cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
return true;
}
bool flash_bdev_writeblock(const uint8_t *src, uint32_t block) {
// non-MBR block, copy to cache
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return false;
}
uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr);
memcpy(dest, src, FLASH_BLOCK_SIZE);
restore_irq_pri(basepri);
return true;
}
int flash_bdev_readblocks_ext(uint8_t *dest, uint32_t block, uint32_t offset, uint32_t len) {
// Get data from flash memory, possibly via cache
while (len) {
uint32_t l = MIN(len, FLASH_BLOCK_SIZE - offset);
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return -1;
}
uint8_t *src = flash_cache_get_addr_for_read(flash_addr + offset);
memcpy(dest, src, l);
dest += l;
block += 1;
offset = 0;
len -= l;
}
return 0;
}
int flash_bdev_writeblocks_ext(const uint8_t *src, uint32_t block, uint32_t offset, uint32_t len) {
// Copy to cache
while (len) {
uint32_t l = MIN(len, FLASH_BLOCK_SIZE - offset);
uint32_t flash_addr = convert_block_to_flash_addr(block);
if (flash_addr == -1) {
// bad block number
return -1;
}
uint32_t basepri = raise_irq_pri(IRQ_PRI_FLASH); // prevent cache flushing and USB access
uint8_t *dest = flash_cache_get_addr_for_write(flash_addr + offset);
memcpy(dest, src, l);
restore_irq_pri(basepri);
src += l;
block += 1;
offset = 0;
len -= l;
}
return 0;
}
#endif // MICROPY_HW_ENABLE_INTERNAL_FLASH_STORAGE