micropython/ports/samd/mcu/samd51/clock_config.c
robert-hh 20e7313453 samd/clock_config: Add HW_DFLL_USB_SYNC and HW_MCU_OSC32KULP extensions.
Two new compile flags are:

MICROPY_HW_DFLL_USB_SYNC: Effective only if DFLL48 does not run from the
crystal.  It will synchronize the DFLL48M clock with the USB's SOF pulse.
If no USB is connected, it will fall back to open loop mode.  The DFLL48M
clock is then pretty precise, but with a higher clock jitter at SAMD51
devices.

MICROPY_HW_MCU_OSC32KULP: Effective only if the devics uses a crystal as
clock source.  Run the MCU clock from the ULP 32kHz oszillator instead of
the crystal.  This flag was added to cater for a interference problem of
the crystal and Neopixel/Debug pins at Adafruit FEATHER Mx boards, which
causes the board to crash.  Drawback: ticks_ms() and time.time() vs. than
ticks_us() and the peripherals like PWM run at not synchronous clocks.
2022-10-06 23:03:08 +11:00

284 lines
10 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* This file provides functions for configuring the clocks.
*
* The MIT License (MIT)
*
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "samd_soc.h"
static uint32_t cpu_freq = CPU_FREQ;
static uint32_t apb_freq = APB_FREQ;
static uint32_t dfll48m_calibration;
int sercom_gclk_id[] = {
SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE,
SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE,
SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE,
#if defined(SERCOM7_GCLK_ID_CORE)
SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE,
#endif
};
uint32_t get_cpu_freq(void) {
return cpu_freq;
}
uint32_t get_apb_freq(void) {
return apb_freq;
}
void set_cpu_freq(uint32_t cpu_freq_arg) {
cpu_freq = cpu_freq_arg;
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
}
// Setup DPLL0 for 120 MHz
// first: disable DPLL0 in case it is running
OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0;
while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.bit.ENABLE == 1) {
}
// Now configure the registers
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(1) | OSCCTRL_DPLLCTRLB_LBYPASS |
OSCCTRL_DPLLCTRLB_REFCLK(0) | OSCCTRL_DPLLCTRLB_WUF | OSCCTRL_DPLLCTRLB_FILTER(0x01);
uint32_t div = cpu_freq / DPLLx_REF_FREQ;
uint32_t frac = (cpu_freq - div * DPLLx_REF_FREQ) / (DPLLx_REF_FREQ / 32);
OSCCTRL->Dpll[0].DPLLRATIO.reg = (frac << 16) + div - 1;
// enable it again
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE | OSCCTRL_DPLLCTRLA_RUNSTDBY;
// Per errata 2.13.1
while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY == 1)) {
}
// Setup GCLK0 for DPLL0 output (48 or 48-200MHz)
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0;
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
}
}
void check_usb_recovery_mode(void) {
#if !MICROPY_HW_XOSC32K
mp_hal_delay_ms(500);
// Check USB status. If not connected, switch DFLL48M back to open loop
if (USB->DEVICE.DeviceEndpoint[0].EPCFG.reg == 0) {
// as per Errata 2.8.3
OSCCTRL->DFLLMUL.reg = 0;
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
}
// Set the mode to open loop mode
OSCCTRL->DFLLCTRLB.reg = 0;
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
}
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE;
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
}
OSCCTRL->DFLLVAL.reg = dfll48m_calibration; // Reload DFLLVAL register
while (OSCCTRL->DFLLSYNC.bit.DFLLVAL == 1) {
}
// Set the mode to open loop mode
OSCCTRL->DFLLCTRLB.reg = 0;
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
}
}
#endif // MICROPY_HW_XOSC32K
}
void init_clocks(uint32_t cpu_freq) {
dfll48m_calibration = 0; // please the compiler
// SAMD51 clock settings
// GCLK0: 48MHz from DFLL48M or 48 - 200 MHz from DPLL0 (SAMD51)
// GCLK1: 32768 Hz from 32KULP or DFLL48M
// GCLK2: 48MHz from DFLL48M for Peripheral devices
// GCLK3: 16Mhz for the us-counter (TC0/TC1)
// GCLK4: 32kHz from crystal, if present
// DPLL0: 48 - 200 MHz
// Steps to set up clocks:
// Reset Clocks
// Switch GCLK0 to DFLL 48MHz
// Setup 32768 Hz source and DFLL48M in closed loop mode, if a crystal is present.
// Setup GCLK1 to the DPLL0 Reference freq. of 32768 Hz
// Setup GCLK1 to drive peripheral channel 1
// Setup DPLL0 to 120MHz
// Setup GCLK0 to 120MHz
// Setup GCLK2 to 48MHz for Peripherals
// Setup GCLK3 to 8MHz for TC0/TC1
// Setup GCLK4 to 32kHz crystal, if present
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
}
#if MICROPY_HW_XOSC32K
// OSCILLATOR CONTROL
// Setup XOSC32K
OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL;
OSC32KCTRL->XOSC32K.bit.CGM = OSC32KCTRL_XOSC32K_CGM_HS_Val;
OSC32KCTRL->XOSC32K.bit.XTALEN = 1; // 0: Generator 1: Crystal
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
OSC32KCTRL->XOSC32K.bit.ONDEMAND = 0;
OSC32KCTRL->XOSC32K.bit.RUNSTDBY = 1;
OSC32KCTRL->XOSC32K.bit.STARTUP = 4;
OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail
OSC32KCTRL->XOSC32K.bit.ENABLE = 1;
// make sure osc32kcrtl is ready
while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) {
}
#if MICROPY_HW_MCU_OSC32KULP
// Setup GCLK1 for 32kHz ULP
GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K;
#else
// Setup GCLK1 for 32kHz crystal
GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K;
#endif
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
}
// Setup GCLK4 for 32kHz crystal
GCLK->GENCTRL[4].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K;
while (GCLK->SYNCBUSY.bit.GENCTRL4) {
}
// Set-up the DFLL48M in closed loop mode with input from the 32kHz crystal
// Step 1: Peripheral channel 0 is driven by GCLK4 and it feeds DFLL48M
GCLK->PCHCTRL[0].reg = GCLK_PCHCTRL_GEN_GCLK4 | GCLK_PCHCTRL_CHEN;
while (GCLK->PCHCTRL[0].bit.CHEN == 0) {
}
// Step 2: Set the multiplication values. The offset of 16384 to the freq is for rounding.
OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) |
OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1);
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
}
// Step 3: Set the mode to closed loop
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_BPLCKC | OSCCTRL_DFLLCTRLB_STABLE | OSCCTRL_DFLLCTRLB_MODE;
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
}
// Wait for lock fine
while (OSCCTRL->STATUS.bit.DFLLLCKF == 0) {
}
// Step 4: Start the DFLL.
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE;
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
}
#else // MICROPY_HW_XOSC32K
// Derive GCLK1 from DFLL48M at DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz)
GCLK->GENCTRL[1].reg = ((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos
| GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
}
OSCCTRL->DFLLCTRLA.bit.RUNSTDBY = 1;
OSCCTRL->DFLLCTRLA.bit.ONDEMAND = 0;
OSCCTRL->DFLLCTRLA.bit.ENABLE = 1;
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
}
#if MICROPY_HW_DFLL_USB_SYNC
// Configure the DFLL48M for USB clock recovery.
// Will have to switch back if no USB
dfll48m_calibration = OSCCTRL->DFLLVAL.reg;
// Set the Multiplication factor.
OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL(48000) |
OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1);
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
}
// Set the mode to closed loop USB Recovery
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_USBCRM | OSCCTRL_DFLLCTRLB_CCDIS | OSCCTRL_DFLLCTRLB_MODE;
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
}
#endif
#endif // MICROPY_HW_XOSC32K
// Peripheral channel 1 is driven by GCLK1 and it feeds DPLL0
GCLK->PCHCTRL[1].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN;
while (GCLK->PCHCTRL[1].bit.CHEN == 0) {
}
set_cpu_freq(cpu_freq);
apb_freq = APB_FREQ; // To be changed if CPU_FREQ < 48M
// Setup GCLK2 for DPLL1 output (48 MHz)
GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
while (GCLK->SYNCBUSY.bit.GENCTRL2) {
}
// Setup GCLK3 for 8MHz, Used for TC0/1 counter
GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(6) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
while (GCLK->SYNCBUSY.bit.GENCTRL3) {
}
}
void enable_sercom_clock(int id) {
GCLK->PCHCTRL[sercom_gclk_id[id]].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2;
// no easy way to set the clocks, except enabling all of them
switch (id) {
case 0:
MCLK->APBAMASK.bit.SERCOM0_ = 1;
break;
case 1:
MCLK->APBAMASK.bit.SERCOM1_ = 1;
break;
case 2:
MCLK->APBBMASK.bit.SERCOM2_ = 1;
break;
case 3:
MCLK->APBBMASK.bit.SERCOM3_ = 1;
break;
case 4:
MCLK->APBDMASK.bit.SERCOM4_ = 1;
break;
case 5:
MCLK->APBDMASK.bit.SERCOM5_ = 1;
break;
#ifdef SERCOM7_GCLK_ID_CORE
case 6:
MCLK->APBDMASK.bit.SERCOM6_ = 1;
break;
case 7:
MCLK->APBDMASK.bit.SERCOM7_ = 1;
break;
#endif
}
}