micropython/ports/stm32/mpbthciport.c
Jim Mussared 61d1e4b01b extmod/nimble: Make stm32 and unix NimBLE ports use synchronous events.
This changes stm32 from using PENDSV to run NimBLE to use the MicroPython
scheduler instead.  This allows Python BLE callbacks to be invoked directly
(and therefore synchronously) rather than via the ringbuffer.

The NimBLE UART HCI and event processing now happens in a scheduled task
every 128ms.  When RX IRQ idle events arrive, it will also schedule this
task to improve latency.

There is a similar change for the unix port where the background thread now
queues the scheduled task.

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
2020-11-13 17:19:05 +11:00

292 lines
9.4 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018-2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/mpbthci.h"
#include "extmod/modbluetooth.h"
#include "systick.h"
#include "pendsv.h"
#include "lib/utils/mpirq.h"
#include "py/obj.h"
#if MICROPY_PY_BLUETOOTH
#define DEBUG_printf(...) // printf("mpbthciport.c: " __VA_ARGS__)
uint8_t mp_bluetooth_hci_cmd_buf[4 + 256];
// Must be provided by the stack bindings (e.g. mpnimbleport.c or mpbtstackport.c).
// Request new data from the uart and pass to the stack, and run pending events/callouts.
extern void mp_bluetooth_hci_poll(void);
// Hook for pendsv poller to run this periodically every 128ms
#define BLUETOOTH_HCI_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & 0x7f) == 0)
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
// For synchronous mode, we run all BLE stack code inside a scheduled task.
// This task is scheduled periodically (every 128ms) via SysTick, or
// immediately on HCI UART RXIDLE.
// Prevent double-enqueuing of the scheduled task.
STATIC volatile bool events_task_is_scheduled = false;
STATIC mp_obj_t run_events_scheduled_task(mp_obj_t none_in) {
(void)none_in;
events_task_is_scheduled = false;
// This will process all buffered HCI UART data, and run any callouts or events.
mp_bluetooth_hci_poll();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(run_events_scheduled_task_obj, run_events_scheduled_task);
// Called periodically (systick) or directly (e.g. UART RX IRQ) in order to
// request that processing happens ASAP in the scheduler.
void mp_bluetooth_hci_systick(uint32_t ticks_ms) {
if (events_task_is_scheduled) {
return;
}
if (ticks_ms == 0 || BLUETOOTH_HCI_TICK(ticks_ms)) {
events_task_is_scheduled = mp_sched_schedule(MP_OBJ_FROM_PTR(&run_events_scheduled_task_obj), mp_const_none);
}
}
#else // !MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
// Called periodically (systick) or directly (e.g. uart irq).
void mp_bluetooth_hci_systick(uint32_t ticks_ms) {
if (ticks_ms == 0 || BLUETOOTH_HCI_TICK(ticks_ms)) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_BLUETOOTH_HCI, mp_bluetooth_hci_poll);
}
}
#endif
#if defined(STM32WB)
/******************************************************************************/
// HCI over IPCC
#include <string.h>
#include "rfcore.h"
STATIC uint16_t hci_uart_rx_buf_cur;
STATIC uint16_t hci_uart_rx_buf_len;
STATIC uint8_t hci_uart_rx_buf_data[256];
int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) {
(void)port;
(void)baudrate;
DEBUG_printf("mp_bluetooth_hci_uart_init (stm32 rfcore)\n");
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
events_task_is_scheduled = false;
#endif
rfcore_ble_init();
hci_uart_rx_buf_cur = 0;
hci_uart_rx_buf_len = 0;
return 0;
}
int mp_bluetooth_hci_uart_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32 rfcore)\n");
return 0;
}
int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) {
(void)baudrate;
return 0;
}
int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) {
MICROPY_PY_BLUETOOTH_ENTER
rfcore_ble_hci_cmd(len, (const uint8_t *)buf);
MICROPY_PY_BLUETOOTH_EXIT
return 0;
}
// Callback to copy data into local hci_uart_rx_buf_data buffer for subsequent use.
STATIC int mp_bluetooth_hci_uart_msg_cb(void *env, const uint8_t *buf, size_t len) {
(void)env;
if (hci_uart_rx_buf_len + len > MP_ARRAY_SIZE(hci_uart_rx_buf_data)) {
len = MP_ARRAY_SIZE(hci_uart_rx_buf_data) - hci_uart_rx_buf_len;
}
memcpy(hci_uart_rx_buf_data + hci_uart_rx_buf_len, buf, len);
hci_uart_rx_buf_len += len;
return 0;
}
int mp_bluetooth_hci_uart_readchar(void) {
if (hci_uart_rx_buf_cur >= hci_uart_rx_buf_len) {
hci_uart_rx_buf_cur = 0;
hci_uart_rx_buf_len = 0;
rfcore_ble_check_msg(mp_bluetooth_hci_uart_msg_cb, NULL);
}
if (hci_uart_rx_buf_cur < hci_uart_rx_buf_len) {
return hci_uart_rx_buf_data[hci_uart_rx_buf_cur++];
} else {
return -1;
}
}
#else
/******************************************************************************/
// HCI over UART
#include "pendsv.h"
#include "uart.h"
pyb_uart_obj_t mp_bluetooth_hci_uart_obj;
mp_irq_obj_t mp_bluetooth_hci_uart_irq_obj;
static uint8_t hci_uart_rxbuf[768];
mp_obj_t mp_uart_interrupt(mp_obj_t self_in) {
// Queue up the scheduler to run the HCI UART and event processing ASAP.
mp_bluetooth_hci_systick(0);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(mp_uart_interrupt_obj, mp_uart_interrupt);
int mp_bluetooth_hci_uart_init(uint32_t port, uint32_t baudrate) {
DEBUG_printf("mp_bluetooth_hci_uart_init (stm32)\n");
#if MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
events_task_is_scheduled = false;
#endif
// bits (8), stop (1), parity (none) and flow (rts/cts) are assumed to match MYNEWT_VAL_BLE_HCI_UART_ constants in syscfg.h.
mp_bluetooth_hci_uart_obj.base.type = &pyb_uart_type;
mp_bluetooth_hci_uart_obj.uart_id = port;
mp_bluetooth_hci_uart_obj.is_static = true;
// We don't want to block indefinitely, but expect flow control is doing its job.
mp_bluetooth_hci_uart_obj.timeout = 200;
mp_bluetooth_hci_uart_obj.timeout_char = 200;
MP_STATE_PORT(pyb_uart_obj_all)[mp_bluetooth_hci_uart_obj.uart_id - 1] = &mp_bluetooth_hci_uart_obj;
// This also initialises the UART and adds the RXIDLE IRQ handler.
mp_bluetooth_hci_uart_set_baudrate(baudrate);
return 0;
}
int mp_bluetooth_hci_uart_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_uart_deinit (stm32)\n");
// TODO: deinit mp_bluetooth_hci_uart_obj
return 0;
}
int mp_bluetooth_hci_uart_set_baudrate(uint32_t baudrate) {
DEBUG_printf("mp_bluetooth_hci_uart_set_baudrate(%lu) (stm32)\n", baudrate);
if (!baudrate) {
return -1;
}
uart_init(&mp_bluetooth_hci_uart_obj, baudrate, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, UART_HWCONTROL_RTS | UART_HWCONTROL_CTS);
uart_set_rxbuf(&mp_bluetooth_hci_uart_obj, sizeof(hci_uart_rxbuf), hci_uart_rxbuf);
// Add IRQ handler for IDLE (i.e. packet finished).
uart_irq_config(&mp_bluetooth_hci_uart_obj, false);
mp_irq_init(&mp_bluetooth_hci_uart_irq_obj, &uart_irq_methods, MP_OBJ_FROM_PTR(&mp_bluetooth_hci_uart_obj));
mp_bluetooth_hci_uart_obj.mp_irq_obj = &mp_bluetooth_hci_uart_irq_obj;
mp_bluetooth_hci_uart_obj.mp_irq_trigger = UART_FLAG_IDLE;
mp_bluetooth_hci_uart_irq_obj.handler = MP_OBJ_FROM_PTR(&mp_uart_interrupt_obj);
mp_bluetooth_hci_uart_irq_obj.ishard = true;
uart_irq_config(&mp_bluetooth_hci_uart_obj, true);
return 0;
}
int mp_bluetooth_hci_uart_write(const uint8_t *buf, size_t len) {
// DEBUG_printf("mp_bluetooth_hci_uart_write (stm32)\n");
mp_bluetooth_hci_controller_wakeup();
int errcode;
uart_tx_data(&mp_bluetooth_hci_uart_obj, (void *)buf, len, &errcode);
if (errcode != 0) {
printf("\nmp_bluetooth_hci_uart_write: failed to write to UART %d\n", errcode);
}
return 0;
}
// This function expects the controller to be in the wake state via a previous call
// to mp_bluetooth_hci_controller_woken.
int mp_bluetooth_hci_uart_readchar(void) {
// DEBUG_printf("mp_bluetooth_hci_uart_readchar (stm32)\n");
if (uart_rx_any(&mp_bluetooth_hci_uart_obj)) {
// DEBUG_printf("... available\n");
return uart_rx_char(&mp_bluetooth_hci_uart_obj);
} else {
return -1;
}
}
#endif // defined(STM32WB)
// Default (weak) implementation of the HCI controller interface.
// A driver (e.g. cywbt43.c) can override these for controller-specific
// functionality (i.e. power management).
MP_WEAK int mp_bluetooth_hci_controller_init(void) {
DEBUG_printf("mp_bluetooth_hci_controller_init (default)\n");
return 0;
}
MP_WEAK int mp_bluetooth_hci_controller_deinit(void) {
DEBUG_printf("mp_bluetooth_hci_controller_deinit (default)\n");
return 0;
}
MP_WEAK int mp_bluetooth_hci_controller_sleep_maybe(void) {
DEBUG_printf("mp_bluetooth_hci_controller_sleep_maybe (default)\n");
return 0;
}
MP_WEAK bool mp_bluetooth_hci_controller_woken(void) {
DEBUG_printf("mp_bluetooth_hci_controller_woken (default)\n");
return true;
}
MP_WEAK int mp_bluetooth_hci_controller_wakeup(void) {
DEBUG_printf("mp_bluetooth_hci_controller_wakeup (default)\n");
return 0;
}
#endif // MICROPY_PY_BLUETOOTH