micropython/stmhal/hal/src/stm32f4xx_hal_nor.c
Damien George 3ef911345c stmhal: Update STM32Cube F4 HAL driver to V1.3.0.
This patch updates ST's HAL to the latest version, V1.3.0, dated 19 June
2014.  Files were copied verbatim from the ST package.  Only change was
to suppress compiler warning of unused variables in 4 places.

A lot of the changes from ST are cosmetic: comments and white space.
Some small code changes here and there, and addition of F411 header.

Main code change is how SysTick interrupt is set: it now has a
configuration variable to set the priority, so we no longer need to work
around this (originall in system_stm32f4xx.c).
2014-08-06 22:33:31 +01:00

969 lines
29 KiB
C

/**
******************************************************************************
* @file stm32f4xx_hal_nor.c
* @author MCD Application Team
* @version V1.1.0
* @date 19-June-2014
* @brief NOR HAL module driver.
* This file provides a generic firmware to drive NOR memories mounted
* as external device.
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
This driver is a generic layered driver which contains a set of APIs used to
control NOR flash memories. It uses the FMC/FSMC layer functions to interface
with NOR devices. This driver is used as follows:
(+) NOR flash memory configuration sequence using the function HAL_NOR_Init()
with control and timing parameters for both normal and extended mode.
(+) Read NOR flash memory manufacturer code and device IDs using the function
HAL_NOR_Read_ID(). The read information is stored in the NOR_ID_TypeDef
structure declared by the function caller.
(+) Access NOR flash memory by read/write data unit operations using the functions
HAL_NOR_Read(), HAL_NOR_Program().
(+) Perform NOR flash erase block/chip operations using the functions
HAL_NOR_Erase_Block() and HAL_NOR_Erase_Chip().
(+) Read the NOR flash CFI (common flash interface) IDs using the function
HAL_NOR_Read_CFI(). The read information is stored in the NOR_CFI_TypeDef
structure declared by the function caller.
(+) You can also control the NOR device by calling the control APIs HAL_NOR_WriteOperation_Enable()/
HAL_NOR_WriteOperation_Disable() to respectively enable/disable the NOR write operation
(+) You can monitor the NOR device HAL state by calling the function
HAL_NOR_GetState()
[..]
(@) This driver is a set of generic APIs which handle standard NOR flash operations.
If a NOR flash device contains different operations and/or implementations,
it should be implemented separately.
*** NOR HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in NOR HAL driver.
(+) __NOR_WRITE : NOR memory write data to specified address
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup NOR
* @brief NOR driver modules
* @{
*/
#ifdef HAL_NOR_MODULE_ENABLED
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup NOR_Private_Functions
* @{
*/
/** @defgroup NOR_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### NOR Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to initialize/de-initialize
the NOR memory
@endverbatim
* @{
*/
/**
* @brief Perform the NOR memory Initialization sequence
* @param hnor: pointer to the NOR handle
* @param Timing: pointer to NOR control timing structure
* @param ExtTiming: pointer to NOR extended mode timing structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Init(NOR_HandleTypeDef *hnor, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming)
{
/* Check the NOR handle parameter */
if(hnor == NULL)
{
return HAL_ERROR;
}
if(hnor->State == HAL_NOR_STATE_RESET)
{
/* Initialize the low level hardware (MSP) */
HAL_NOR_MspInit(hnor);
}
/* Initialize NOR control Interface */
FMC_NORSRAM_Init(hnor->Instance, &(hnor->Init));
/* Initialize NOR timing Interface */
FMC_NORSRAM_Timing_Init(hnor->Instance, Timing, hnor->Init.NSBank);
/* Initialize NOR extended mode timing Interface */
FMC_NORSRAM_Extended_Timing_Init(hnor->Extended, ExtTiming, hnor->Init.NSBank, hnor->Init.ExtendedMode);
/* Enable the NORSRAM device */
__FMC_NORSRAM_ENABLE(hnor->Instance, hnor->Init.NSBank);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
return HAL_OK;
}
/**
* @brief Perform NOR memory De-Initialization sequence
* @param hnor: pointer to a NOR_HandleTypeDef structure that contains
* the configuration information for NOR module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_DeInit(NOR_HandleTypeDef *hnor)
{
/* De-Initialize the low level hardware (MSP) */
HAL_NOR_MspDeInit(hnor);
/* Configure the NOR registers with their reset values */
FMC_NORSRAM_DeInit(hnor->Instance, hnor->Extended, hnor->Init.NSBank);
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief NOR MSP Init
* @param hnor: pointer to a NOR_HandleTypeDef structure that contains
* the configuration information for NOR module.
* @retval None
*/
__weak void HAL_NOR_MspInit(NOR_HandleTypeDef *hnor)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NOR_MspInit could be implemented in the user file
*/
}
/**
* @brief NOR MSP DeInit
* @param hnor: pointer to a NOR_HandleTypeDef structure that contains
* the configuration information for NOR module.
* @retval None
*/
__weak void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NOR_MspDeInit could be implemented in the user file
*/
}
/**
* @brief NOR BSP Wait fro Ready/Busy signal
* @param hnor: pointer to a NOR_HandleTypeDef structure that contains
* the configuration information for NOR module.
* @param Timeout: Maximum timeout value
* @retval None
*/
__weak void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout)
{
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_NOR_BspWait could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup NOR_Group2 Input and Output functions
* @brief Input Output and memory control functions
*
@verbatim
==============================================================================
##### NOR Input and Output functions #####
==============================================================================
[..]
This section provides functions allowing to use and control the NOR memory
@endverbatim
* @{
*/
/**
* @brief Read NOR flash IDs
* @param hnor: pointer to the NOR handle
* @param pNOR_ID : pointer to NOR ID structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Read_ID(NOR_HandleTypeDef *hnor, NOR_IDTypeDef *pNOR_ID)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send read ID command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x0090);
/* Read the NOR IDs */
pNOR_ID->Manufacturer_Code = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, MC_ADDRESS);
pNOR_ID->Device_Code1 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, DEVICE_CODE1_ADDR);
pNOR_ID->Device_Code2 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, DEVICE_CODE2_ADDR);
pNOR_ID->Device_Code3 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, DEVICE_CODE3_ADDR);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Returns the NOR memory to Read mode.
* @param hnor: pointer to the NOR handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_ReturnToReadMode(NOR_HandleTypeDef *hnor)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
__NOR_WRITE(deviceAddress, 0x00F0);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Read data from NOR memory
* @param hnor: pointer to the NOR handle
* @param pAddress: pointer to Device address
* @param pData : pointer to read data
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Read(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send read data command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x00555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x002AA), 0x0055);
__NOR_WRITE(pAddress, 0x00F0);
/* Read the data */
*pData = *(__IO uint32_t *)pAddress;
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Program data to NOR memory
* @param hnor: pointer to the NOR handle
* @param pAddress: Device address
* @param pData : pointer to the data to write
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Program(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send program data command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00A0);
/* Write the data */
__NOR_WRITE(pAddress, *pData);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Reads a half-word buffer from the NOR memory.
* @param hnor: pointer to the NOR handle
* @param uwAddress: NOR memory internal address to read from.
* @param pData: pointer to the buffer that receives the data read from the
* NOR memory.
* @param uwBufferSize : number of Half word to read.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_ReadBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send read data command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x00555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x002AA), 0x0055);
__NOR_WRITE(uwAddress, 0x00F0);
/* Read buffer */
while( uwBufferSize > 0)
{
*pData++ = *(__IO uint16_t *)uwAddress;
uwAddress += 2;
uwBufferSize--;
}
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Writes a half-word buffer to the NOR memory. This function must be used
only with S29GL128P NOR memory.
* @param hnor: pointer to the NOR handle
* @param uwAddress: NOR memory internal start write address
* @param pData: pointer to source data buffer.
* @param uwBufferSize: Size of the buffer to write
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_ProgramBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize)
{
uint32_t lastloadedaddress = 0;
uint32_t currentaddress = 0;
uint32_t endaddress = 0;
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Initialize variables */
currentaddress = uwAddress;
endaddress = uwAddress + uwBufferSize - 1;
lastloadedaddress = uwAddress;
/* Issue unlock command sequence */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
/* Write Buffer Load Command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, uwAddress), 0x25);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, uwAddress), (uwBufferSize - 1));
/* Load Data into NOR Buffer */
while(currentaddress <= endaddress)
{
/* Store last loaded address & data value (for polling) */
lastloadedaddress = currentaddress;
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, currentaddress), *pData++);
currentaddress += 1;
}
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, lastloadedaddress), 0x29);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Erase the specified block of the NOR memory
* @param hnor: pointer to the NOR handle
* @param BlockAddress : Block to erase address
* @param Address: Device address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Erase_Block(NOR_HandleTypeDef *hnor, uint32_t BlockAddress, uint32_t Address)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send block erase command sequence */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x0080);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE((uint32_t)(BlockAddress + Address), 0x30);
/* Check the NOR memory status and update the controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Erase the entire NOR chip.
* @param hnor: pointer to the NOR handle
* @param Address : Device address
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Erase_Chip(NOR_HandleTypeDef *hnor, uint32_t Address)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send NOR chip erase command sequence */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x0080);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x00AA);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x02AA), 0x0055);
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0555), 0x0010);
/* Check the NOR memory status and update the controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Read NOR flash CFI IDs
* @param hnor: pointer to the NOR handle
* @param pNOR_CFI : pointer to NOR CFI IDs structure
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_Read_CFI(NOR_HandleTypeDef *hnor, NOR_CFITypeDef *pNOR_CFI)
{
uint32_t deviceAddress = 0;
/* Process Locked */
__HAL_LOCK(hnor);
/* Check the NOR controller state */
if(hnor->State == HAL_NOR_STATE_BUSY)
{
return HAL_BUSY;
}
/* Select the NOR device address */
if (hnor->Init.NSBank == FMC_NORSRAM_BANK1)
{
deviceAddress = NOR_MEMORY_ADRESS1;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2)
{
deviceAddress = NOR_MEMORY_ADRESS2;
}
else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3)
{
deviceAddress = NOR_MEMORY_ADRESS3;
}
else /* FMC_NORSRAM_BANK4 */
{
deviceAddress = NOR_MEMORY_ADRESS4;
}
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Send read CFI query command */
__NOR_WRITE(__NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, 0x0055), 0x0098);
/* read the NOR CFI information */
pNOR_CFI->CFI_1 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, CFI1_ADDRESS);
pNOR_CFI->CFI_2 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, CFI2_ADDRESS);
pNOR_CFI->CFI_3 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, CFI3_ADDRESS);
pNOR_CFI->CFI_4 = *(__IO uint16_t *) __NOR_ADDR_SHIFT(deviceAddress, NOR_MEMORY_8B, CFI4_ADDRESS);
/* Check the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup NOR_Group3 Control functions
* @brief management functions
*
@verbatim
==============================================================================
##### NOR Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the NOR interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically NOR write operation.
* @param hnor: pointer to the NOR handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_WriteOperation_Enable(NOR_HandleTypeDef *hnor)
{
/* Process Locked */
__HAL_LOCK(hnor);
/* Enable write operation */
FMC_NORSRAM_WriteOperation_Enable(hnor->Instance, hnor->Init.NSBank);
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @brief Disables dynamically NOR write operation.
* @param hnor: pointer to the NOR handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_NOR_WriteOperation_Disable(NOR_HandleTypeDef *hnor)
{
/* Process Locked */
__HAL_LOCK(hnor);
/* Update the SRAM controller state */
hnor->State = HAL_NOR_STATE_BUSY;
/* Disable write operation */
FMC_NORSRAM_WriteOperation_Disable(hnor->Instance, hnor->Init.NSBank);
/* Update the NOR controller state */
hnor->State = HAL_NOR_STATE_PROTECTED;
/* Process unlocked */
__HAL_UNLOCK(hnor);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup NOR_Group4 State functions
* @brief Peripheral State functions
*
@verbatim
==============================================================================
##### NOR State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the NOR controller
and the data flow.
@endverbatim
* @{
*/
/**
* @brief return the NOR controller state
* @param hnor: pointer to the NOR handle
* @retval NOR controller state
*/
HAL_NOR_StateTypeDef HAL_NOR_GetState(NOR_HandleTypeDef *hnor)
{
return hnor->State;
}
/**
* @brief Returns the NOR operation status.
* @param hnor: pointer to the NOR handle
* @param Address: Device address
* @param Timeout: NOR progamming Timeout
* @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR
* or NOR_TIMEOUT
*/
NOR_StatusTypedef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout)
{
NOR_StatusTypedef status = NOR_ONGOING;
uint16_t tmpSR1 = 0, tmpSR2 = 0;
uint32_t tickstart = 0;
/* Poll on NOR memory Ready/Busy signal ------------------------------------*/
HAL_NOR_MspWait(hnor, Timeout);
/* Get the NOR memory operation status -------------------------------------*/
while(status != NOR_SUCCESS)
{
/* Get tick */
tickstart = HAL_GetTick();
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
status = NOR_TIMEOUT;
}
}
/* Read NOR status register (DQ6 and DQ5) */
tmpSR1 = *(__IO uint16_t *)Address;
tmpSR2 = *(__IO uint16_t *)Address;
/* If DQ6 did not toggle between the two reads then return NOR_Success */
if((tmpSR1 & 0x0040) == (tmpSR2 & 0x0040))
{
return NOR_SUCCESS;
}
if((tmpSR1 & 0x0020) == 0x0020)
{
return NOR_ONGOING;
}
tmpSR1 = *(__IO uint16_t *)Address;
tmpSR2 = *(__IO uint16_t *)Address;
/* If DQ6 did not toggle between the two reads then return NOR_Success */
if((tmpSR1 & 0x0040) == (tmpSR2 & 0x0040))
{
return NOR_SUCCESS;
}
if((tmpSR1 & 0x0020) == 0x0020)
{
return NOR_ERROR;
}
}
/* Return the operation status */
return status;
}
/**
* @}
*/
/**
* @}
*/
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#endif /* HAL_NOR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/