micropython/stmhal/dac.c
Damien George 3ef911345c stmhal: Update STM32Cube F4 HAL driver to V1.3.0.
This patch updates ST's HAL to the latest version, V1.3.0, dated 19 June
2014.  Files were copied verbatim from the ST package.  Only change was
to suppress compiler warning of unused variables in 4 places.

A lot of the changes from ST are cosmetic: comments and white space.
Some small code changes here and there, and addition of F411 header.

Main code change is how SysTick interrupt is set: it now has a
configuration variable to set the priority, so we no longer need to work
around this (originall in system_stm32f4xx.c).
2014-08-06 22:33:31 +01:00

366 lines
12 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "parse.h"
#include "obj.h"
#include "runtime.h"
#include "timer.h"
#include "dac.h"
/// \moduleref pyb
/// \class DAC - digital to analog conversion
///
/// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6.
/// The voltage will be between 0 and 3.3V.
///
/// *This module will undergo changes to the API.*
///
/// Example usage:
///
/// from pyb import DAC
///
/// dac = DAC(1) # create DAC 1 on pin X5
/// dac.write(128) # write a value to the DAC (makes X5 1.65V)
///
/// To output a continuous sine-wave:
///
/// import math
/// from pyb import DAC
///
/// # create a buffer containing a sine-wave
/// buf = bytearray(100)
/// for i in range(len(buf)):
/// buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))
///
/// # output the sine-wave at 400Hz
/// dac = DAC(1)
/// dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)
#if MICROPY_HW_ENABLE_DAC
STATIC DAC_HandleTypeDef DAC_Handle;
void dac_init(void) {
memset(&DAC_Handle, 0, sizeof DAC_Handle);
DAC_Handle.Instance = DAC;
DAC_Handle.State = HAL_DAC_STATE_RESET;
HAL_DAC_Init(&DAC_Handle);
}
STATIC void TIM6_Config(uint freq) {
// Init TIM6 at the required frequency (in Hz)
timer_tim6_init(freq);
// TIM6 TRGO selection
TIM_MasterConfigTypeDef config;
config.MasterOutputTrigger = TIM_TRGO_UPDATE;
config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
HAL_TIMEx_MasterConfigSynchronization(&TIM6_Handle, &config);
// TIM6 start counter
HAL_TIM_Base_Start(&TIM6_Handle);
}
/******************************************************************************/
// Micro Python bindings
typedef struct _pyb_dac_obj_t {
mp_obj_base_t base;
uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2
DMA_Stream_TypeDef *dma_stream; // DMA1_Stream5 or DMA1_Stream6
mp_uint_t state;
} pyb_dac_obj_t;
// create the dac object
// currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2)
/// \classmethod \constructor(id)
/// Construct a new DAC object.
///
/// `id` can be 1 or 2: DAC 1 is on pin X5 and DAC 2 is on pin X6.
STATIC mp_obj_t pyb_dac_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t);
dac->base.type = &pyb_dac_type;
mp_int_t dac_id = mp_obj_get_int(args[0]);
uint32_t pin;
if (dac_id == 1) {
pin = GPIO_PIN_4;
dac->dac_channel = DAC_CHANNEL_1;
dac->dma_stream = DMA1_Stream5;
} else if (dac_id == 2) {
pin = GPIO_PIN_5;
dac->dac_channel = DAC_CHANNEL_2;
dac->dma_stream = DMA1_Stream6;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC %d does not exist", dac_id));
}
// GPIO configuration
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = pin;
GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
GPIO_InitStructure.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
// DAC peripheral clock
__DAC_CLK_ENABLE();
// stop anything already going on
HAL_DAC_Stop(&DAC_Handle, dac->dac_channel);
if ((dac->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL)
|| (dac->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) {
HAL_DAC_Stop_DMA(&DAC_Handle, dac->dac_channel);
}
dac->state = 0;
// return object
return dac;
}
/// \method noise(freq)
/// Generate a pseudo-random noise signal. A new random sample is written
/// to the DAC output at the given frequency.
STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) {
pyb_dac_obj_t *self = self_in;
// set TIM6 to trigger the DAC at the given frequency
TIM6_Config(mp_obj_get_int(freq));
if (self->state != 2) {
// configure DAC to trigger via TIM6
DAC_ChannelConfTypeDef config;
config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
self->state = 2;
}
// set noise wave generation
HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0);
HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0);
HAL_DAC_Start(&DAC_Handle, self->dac_channel);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise);
/// \method triangle(freq)
/// Generate a triangle wave. The value on the DAC output changes at
/// the given frequency, and the frequence of the repeating triangle wave
/// itself is 256 (or 1024, need to check) times smaller.
STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) {
pyb_dac_obj_t *self = self_in;
// set TIM6 to trigger the DAC at the given frequency
TIM6_Config(mp_obj_get_int(freq));
if (self->state != 2) {
// configure DAC to trigger via TIM6
DAC_ChannelConfTypeDef config;
config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
self->state = 2;
}
// set triangle wave generation
HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023);
HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100);
HAL_DAC_Start(&DAC_Handle, self->dac_channel);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle);
/// \method write(value)
/// Direct access to the DAC output (8 bit only at the moment).
STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) {
pyb_dac_obj_t *self = self_in;
if (self->state != 1) {
DAC_ChannelConfTypeDef config;
config.DAC_Trigger = DAC_TRIGGER_NONE;
config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;
HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
self->state = 1;
}
HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_8B_R, mp_obj_get_int(val));
HAL_DAC_Start(&DAC_Handle, self->dac_channel);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write);
/// \method write_timed(data, freq, *, mode=DAC.NORMAL)
/// Initiates a burst of RAM to DAC using a DMA transfer.
/// The input data is treated as an array of bytes (8 bit data).
///
/// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`.
///
/// TIM6 is used to control the frequency of the transfer.
// TODO add callback argument, to call when transfer is finished
// TODO add double buffer argument
STATIC const mp_arg_t pyb_dac_write_timed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} },
};
#define PYB_DAC_WRITE_TIMED_NUM_ARGS MP_ARRAY_SIZE(pyb_dac_write_timed_args)
mp_obj_t pyb_dac_write_timed(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_dac_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_DAC_WRITE_TIMED_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_DAC_WRITE_TIMED_NUM_ARGS, pyb_dac_write_timed_args, vals);
// get the data to write
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(vals[0].u_obj, &bufinfo, MP_BUFFER_READ);
// set TIM6 to trigger the DAC at the given frequency
TIM6_Config(vals[1].u_int);
__DMA1_CLK_ENABLE();
/*
DMA_Cmd(self->dma_stream, DISABLE);
while (DMA_GetCmdStatus(self->dma_stream) != DISABLE) {
}
DAC_Cmd(self->dac_channel, DISABLE);
*/
/*
// DAC channel configuration
DAC_InitTypeDef DAC_InitStructure;
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(self->dac_channel, &DAC_InitStructure);
*/
// DMA1_Stream[67] channel7 configuration
DMA_HandleTypeDef DMA_Handle;
DMA_Handle.Instance = self->dma_stream;
// Need to deinit DMA first
DMA_Handle.State = HAL_DMA_STATE_READY;
HAL_DMA_DeInit(&DMA_Handle);
DMA_Handle.Init.Channel = DMA_CHANNEL_7;
DMA_Handle.Init.Direction = DMA_MEMORY_TO_PERIPH;
DMA_Handle.Init.PeriphInc = DMA_PINC_DISABLE;
DMA_Handle.Init.MemInc = DMA_MINC_ENABLE;
DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
DMA_Handle.Init.Mode = vals[2].u_int;
DMA_Handle.Init.Priority = DMA_PRIORITY_HIGH;
DMA_Handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
DMA_Handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
DMA_Handle.Init.MemBurst = DMA_MBURST_SINGLE;
DMA_Handle.Init.PeriphBurst = DMA_PBURST_SINGLE;
HAL_DMA_Init(&DMA_Handle);
if (self->dac_channel == DAC_CHANNEL_1) {
__HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle);
} else {
__HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle);
}
DAC_Handle.Instance = DAC;
DAC_Handle.State = HAL_DAC_STATE_RESET;
HAL_DAC_Init(&DAC_Handle);
if (self->state != 3) {
DAC_ChannelConfTypeDef config;
config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
self->state = 3;
}
HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R);
/*
// enable DMA stream
DMA_Cmd(self->dma_stream, ENABLE);
while (DMA_GetCmdStatus(self->dma_stream) == DISABLE) {
}
// enable DAC channel
DAC_Cmd(self->dac_channel, ENABLE);
// enable DMA for DAC channel
DAC_DMACmd(self->dac_channel, ENABLE);
*/
//printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed);
STATIC const mp_map_elem_t pyb_dac_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_noise), (mp_obj_t)&pyb_dac_noise_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_triangle), (mp_obj_t)&pyb_dac_triangle_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_dac_write_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_write_timed), (mp_obj_t)&pyb_dac_write_timed_obj },
// class constants
{ MP_OBJ_NEW_QSTR(MP_QSTR_NORMAL), MP_OBJ_NEW_SMALL_INT(DMA_NORMAL) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CIRCULAR), MP_OBJ_NEW_SMALL_INT(DMA_CIRCULAR) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table);
const mp_obj_type_t pyb_dac_type = {
{ &mp_type_type },
.name = MP_QSTR_DAC,
.make_new = pyb_dac_make_new,
.locals_dict = (mp_obj_t)&pyb_dac_locals_dict,
};
#endif // MICROPY_HW_ENABLE_DAC