micropython/py/bc.h
Damien George 1084b0f9c2 py: Store bytecode arg names in bytecode (were in own array).
This saves a lot of RAM for 2 reasons:

1. For functions that don't have default values, var args or var kw
args (which is a large number of functions in the general case), the
mp_obj_fun_bc_t type now fits in 1 GC block (previously needed 2 because
of the extra pointer to point to the arg_names array).  So this saves 16
bytes per function (32 bytes on 64-bit machines).

2. Combining separate memory regions generally saves RAM because the
unused bytes at the end of the GC block are saved for 1 of the blocks
(since that block doesn't exist on its own anymore).  So generally this
saves 8 bytes per function.

Tested by importing lots of modules:

- 64-bit Linux gave about an 8% RAM saving for 86k of used RAM.
- pyboard gave about a 6% RAM saving for 31k of used RAM.
2014-10-25 20:23:13 +01:00

63 lines
2.7 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Exception stack entry
typedef struct _mp_exc_stack {
const byte *handler;
// bit 0 is saved currently_in_except_block value
mp_obj_t *val_sp;
// Saved exception, valid if currently_in_except_block bit is 1
mp_obj_t prev_exc;
// We might only have 2 interesting cases here: SETUP_EXCEPT & SETUP_FINALLY,
// consider storing it in bit 1 of val_sp. TODO: SETUP_WITH?
byte opcode;
} mp_exc_stack_t;
typedef struct _mp_code_state {
const byte *code_info;
const byte *ip;
mp_obj_t *sp;
// bit 0 is saved currently_in_except_block value
mp_exc_stack_t *exc_sp;
mp_uint_t n_state;
// Variable-length
mp_obj_t state[0];
// Variable-length, never accessed by name, only as (void*)(state + n_state)
//mp_exc_stack_t exc_state[0];
} mp_code_state;
mp_uint_t mp_decode_uint(const byte **ptr);
mp_vm_return_kind_t mp_execute_bytecode(mp_code_state *code_state, volatile mp_obj_t inject_exc);
void mp_setup_code_state(mp_code_state *code_state, mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args);
void mp_bytecode_print(const void *descr, mp_uint_t n_total_args, const byte *code, mp_uint_t len);
void mp_bytecode_print2(const byte *code, mp_uint_t len);
// Helper macros to access pointer with least significant bit holding a flag
#define MP_TAGPTR_PTR(x) ((void*)((mp_uint_t)(x) & ~((mp_uint_t)1)))
#define MP_TAGPTR_TAG(x) ((mp_uint_t)(x) & 1)
#define MP_TAGPTR_MAKE(ptr, tag) ((void*)((mp_uint_t)(ptr) | tag))