micropython/ports/stm32/qspi.c
Damien George 8da39fd182 stm32/qspi: Use MPU to allow access to valid memory-mapped QSPI region.
The Cortex-M7 CPU will do speculative loads from any memory location that
is not explicitly forbidden.  This includes the QSPI memory-mapped region
starting at 0x90000000 and with size 256MiB.  Speculative loads to this
QSPI region may 1) interfere with the QSPI peripheral registers (eg the
address register) if the QSPI is not in memory-mapped mode; 2) attempt to
access data outside the configured size of the QSPI flash when it is in
memory-mapped mode.  Both of these scenarios will lead to issues with the
QSPI peripheral (eg Cortex bus lock up in scenario 2).

To prevent such speculative loads from interfering with the peripheral the
MPU is configured in this commit to restrict access to the QSPI mapped
region: when not memory mapped the entire region is forbidden; when memory
mapped only accesses to the valid flash size are permitted.
2019-07-03 01:27:33 +10:00

328 lines
13 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "mpu.h"
#include "qspi.h"
#include "pin_static_af.h"
#if defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2)
#define QSPI_MAP_ADDR (0x90000000)
#ifndef MICROPY_HW_QSPI_PRESCALER
#define MICROPY_HW_QSPI_PRESCALER 3 // F_CLK = F_AHB/3 (72MHz when CPU is 216MHz)
#endif
#ifndef MICROPY_HW_QSPI_SAMPLE_SHIFT
#define MICROPY_HW_QSPI_SAMPLE_SHIFT 1 // sample shift enabled
#endif
#ifndef MICROPY_HW_QSPI_TIMEOUT_COUNTER
#define MICROPY_HW_QSPI_TIMEOUT_COUNTER 0 // timeout counter disabled (see F7 errata)
#endif
#ifndef MICROPY_HW_QSPI_CS_HIGH_CYCLES
#define MICROPY_HW_QSPI_CS_HIGH_CYCLES 2 // nCS stays high for 2 cycles
#endif
static inline void qspi_mpu_disable_all(void) {
// Configure MPU to disable access to entire QSPI region, to prevent CPU
// speculative execution from accessing this region and modifying QSPI registers.
mpu_config_start();
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x00, MPU_REGION_SIZE_256MB));
mpu_config_end();
}
static inline void qspi_mpu_enable_mapped(void) {
// Configure MPU to allow access to only the valid part of external SPI flash.
// The memory accesses to the mapped QSPI are faster if the MPU is not used
// for the memory-mapped region, so 3 MPU regions are used to disable access
// to everything except the valid address space, using holes in the bottom
// of the regions and nesting them.
// At the moment this is hard-coded to 2MiB of QSPI address space.
mpu_config_start();
mpu_config_region(MPU_REGION_QSPI1, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_256MB));
mpu_config_region(MPU_REGION_QSPI2, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x0f, MPU_REGION_SIZE_32MB));
mpu_config_region(MPU_REGION_QSPI3, QSPI_MAP_ADDR, MPU_CONFIG_DISABLE(0x01, MPU_REGION_SIZE_16MB));
mpu_config_end();
}
void qspi_init(void) {
qspi_mpu_disable_all();
// Configure pins
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_CS, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_NCS);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_SCK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_CLK);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO0);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO1);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO2);
mp_hal_pin_config_alt_static_speed(MICROPY_HW_QSPIFLASH_IO3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_NONE, MP_HAL_PIN_SPEED_VERY_HIGH, STATIC_AF_QUADSPI_BK1_IO3);
// Bring up the QSPI peripheral
__HAL_RCC_QSPI_CLK_ENABLE();
QUADSPI->CR =
(MICROPY_HW_QSPI_PRESCALER - 1) << QUADSPI_CR_PRESCALER_Pos
| 3 << QUADSPI_CR_FTHRES_Pos // 4 bytes must be available to read/write
#if defined(QUADSPI_CR_FSEL_Pos)
| 0 << QUADSPI_CR_FSEL_Pos // FLASH 1 selected
#endif
#if defined(QUADSPI_CR_DFM_Pos)
| 0 << QUADSPI_CR_DFM_Pos // dual-flash mode disabled
#endif
| MICROPY_HW_QSPI_SAMPLE_SHIFT << QUADSPI_CR_SSHIFT_Pos
| MICROPY_HW_QSPI_TIMEOUT_COUNTER << QUADSPI_CR_TCEN_Pos
| 1 << QUADSPI_CR_EN_Pos // enable the peripheral
;
QUADSPI->DCR =
(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2 - 3 - 1) << QUADSPI_DCR_FSIZE_Pos
| (MICROPY_HW_QSPI_CS_HIGH_CYCLES - 1) << QUADSPI_DCR_CSHT_Pos
| 0 << QUADSPI_DCR_CKMODE_Pos // CLK idles at low state
;
}
void qspi_memory_map(void) {
// Enable memory-mapped mode
QUADSPI->ABR = 0; // disable continuous read mode
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 3 << QUADSPI_CCR_FMODE_Pos // memory-mapped mode
| 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines
| 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles
| 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte
| 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines
| 2 << QUADSPI_CCR_ADSIZE_Pos // 24-bit address size
| 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| 0xeb << QUADSPI_CCR_INSTRUCTION_Pos // quad read opcode
;
qspi_mpu_enable_mapped();
}
STATIC int qspi_ioctl(void *self_in, uint32_t cmd) {
(void)self_in;
switch (cmd) {
case MP_QSPI_IOCTL_INIT:
qspi_init();
break;
case MP_QSPI_IOCTL_BUS_RELEASE:
// Switch to memory-map mode when bus is idle
qspi_memory_map();
break;
}
return 0; // success
}
STATIC void qspi_write_cmd_data(void *self_in, uint8_t cmd, size_t len, uint32_t data) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
if (len == 0) {
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 0 << QUADSPI_CCR_DMODE_Pos // no data
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
} else {
QUADSPI->DLR = len - 1;
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
// This assumes len==2
*(uint16_t*)&QUADSPI->DR = data;
}
// Wait for write to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
STATIC void qspi_write_cmd_addr_data(void *self_in, uint8_t cmd, uint32_t addr, size_t len, const uint8_t *src) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
if (len == 0) {
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 0 << QUADSPI_CCR_DMODE_Pos // no data
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 2 << QUADSPI_CCR_ADSIZE_Pos // 24-bit address size
| 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
QUADSPI->AR = addr;
} else {
QUADSPI->DLR = len - 1;
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 0 << QUADSPI_CCR_FMODE_Pos // indirect write mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 2 << QUADSPI_CCR_ADSIZE_Pos // 24-bit address size
| 1 << QUADSPI_CCR_ADMODE_Pos // address on 1 line
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // write opcode
;
QUADSPI->AR = addr;
// Write out the data 1 byte at a time
while (len) {
while (!(QUADSPI->SR & QUADSPI_SR_FTF)) {
}
*(volatile uint8_t*)&QUADSPI->DR = *src++;
--len;
}
}
// Wait for write to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
STATIC uint32_t qspi_read_cmd(void *self_in, uint8_t cmd, size_t len) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
QUADSPI->DLR = len - 1; // number of bytes to read
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode
| 1 << QUADSPI_CCR_DMODE_Pos // data on 1 line
| 0 << QUADSPI_CCR_DCYC_Pos // 0 dummy cycles
| 0 << QUADSPI_CCR_ABMODE_Pos // no alternate byte
| 0 << QUADSPI_CCR_ADMODE_Pos // no address
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // read opcode
;
// Wait for read to finish
while (!(QUADSPI->SR & QUADSPI_SR_TCF)) {
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
// Read result
return QUADSPI->DR;
}
STATIC void qspi_read_cmd_qaddr_qdata(void *self_in, uint8_t cmd, uint32_t addr, size_t len, uint8_t *dest) {
(void)self_in;
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
QUADSPI->DLR = len - 1; // number of bytes to read
QUADSPI->CCR =
0 << QUADSPI_CCR_DDRM_Pos // DDR mode disabled
| 0 << QUADSPI_CCR_SIOO_Pos // send instruction every transaction
| 1 << QUADSPI_CCR_FMODE_Pos // indirect read mode
| 3 << QUADSPI_CCR_DMODE_Pos // data on 4 lines
| 4 << QUADSPI_CCR_DCYC_Pos // 4 dummy cycles
| 0 << QUADSPI_CCR_ABSIZE_Pos // 8-bit alternate byte
| 3 << QUADSPI_CCR_ABMODE_Pos // alternate byte on 4 lines
| 2 << QUADSPI_CCR_ADSIZE_Pos // 24-bit address size
| 3 << QUADSPI_CCR_ADMODE_Pos // address on 4 lines
| 1 << QUADSPI_CCR_IMODE_Pos // instruction on 1 line
| cmd << QUADSPI_CCR_INSTRUCTION_Pos // quad read opcode
;
QUADSPI->ABR = 0; // alternate byte: disable continuous read mode
QUADSPI->AR = addr; // addres to read from
// Read in the data 4 bytes at a time if dest is aligned
if (((uintptr_t)dest & 3) == 0) {
while (len >= 4) {
while (!(QUADSPI->SR & QUADSPI_SR_FTF)) {
}
*(uint32_t*)dest = QUADSPI->DR;
dest += 4;
len -= 4;
}
}
// Read in remaining data 1 byte at a time
while (len) {
while (!((QUADSPI->SR >> QUADSPI_SR_FLEVEL_Pos) & 0x3f)) {
}
*dest++ = *(volatile uint8_t*)&QUADSPI->DR;
--len;
}
QUADSPI->FCR = QUADSPI_FCR_CTCF; // clear TC flag
}
const mp_qspi_proto_t qspi_proto = {
.ioctl = qspi_ioctl,
.write_cmd_data = qspi_write_cmd_data,
.write_cmd_addr_data = qspi_write_cmd_addr_data,
.read_cmd = qspi_read_cmd,
.read_cmd_qaddr_qdata = qspi_read_cmd_qaddr_qdata,
};
#endif // defined(MICROPY_HW_QSPIFLASH_SIZE_BITS_LOG2)