micropython/stmhal/diskio.c
T S 86aa16bea6 stmhal: Implement delayed RTC initialization with LSI fallback.
If RTC is already running at boot then it's left alone.  Otherwise, RTC is
started at boot but startup function returns straight away.  RTC startup
is then finished the first time it is used.  Fallback to LSI if LSE fails
to start in a certain time.

Also included:
 MICROPY_HW_CLK_LAST_FREQ
        hold pyb.freq() parameters in RTC backup reg
 MICROPY_HW_RTC_USE_US
        option to present datetime sub-seconds in microseconds
 MICROPY_HW_RTC_USE_CALOUT
        option to enable RTC calibration output

CLK_LAST_FREQ and RTC_USE_CALOUT are enabled for PYBv1.0.
2015-11-23 23:23:07 +00:00

289 lines
9.3 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* Original template for this file comes from:
* Low level disk I/O module skeleton for FatFs, (C)ChaN, 2013
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include STM32_HAL_H
#include "py/runtime.h"
#include "lib/fatfs/ff.h" /* FatFs lower layer API */
#include "lib/fatfs/diskio.h" /* FatFs lower layer API */
#include "rtc.h"
#include "storage.h"
#include "sdcard.h"
#include "fsusermount.h"
const PARTITION VolToPart[] = {
{0, 1}, // Logical drive 0 ==> Physical drive 0, 1st partition
{1, 0}, // Logical drive 1 ==> Physical drive 1 (auto detection)
{2, 0}, // Logical drive 2 ==> Physical drive 2 (auto detection)
/*
{0, 2}, // Logical drive 2 ==> Physical drive 0, 2nd partition
{0, 3}, // Logical drive 3 ==> Physical drive 0, 3rd partition
*/
};
/*-----------------------------------------------------------------------*/
/* Initialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber (0..) */
)
{
switch (pdrv) {
case PD_FLASH:
storage_init();
return 0;
#if MICROPY_HW_HAS_SDCARD
case PD_SDCARD:
if (!sdcard_power_on()) {
return STA_NODISK;
}
// TODO return STA_PROTECT if SD card is read only
return 0;
#endif
case PD_USER:
if (MP_STATE_PORT(fs_user_mount) == NULL) {
return STA_NODISK;
}
if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) {
return STA_PROTECT;
}
return 0;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Get Disk Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber (0..) */
)
{
switch (pdrv) {
case PD_FLASH :
// flash is ready
return 0;
#if MICROPY_HW_HAS_SDCARD
case PD_SDCARD:
// TODO return STA_PROTECT if SD card is read only
return 0;
#endif
case PD_USER:
if (MP_STATE_PORT(fs_user_mount) == NULL) {
return STA_NODISK;
}
if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) {
return STA_PROTECT;
}
return 0;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Sector address (LBA) */
UINT count /* Number of sectors to read (1..128) */
)
{
switch (pdrv) {
case PD_FLASH:
for (int i = 0; i < count; i++) {
if (!storage_read_block(buff + i * FLASH_BLOCK_SIZE, sector + i)) {
return RES_ERROR;
}
}
return RES_OK;
#if MICROPY_HW_HAS_SDCARD
case PD_SDCARD:
if (sdcard_read_blocks(buff, sector, count) != 0) {
return RES_ERROR;
}
return RES_OK;
#endif
case PD_USER:
if (MP_STATE_PORT(fs_user_mount) == NULL) {
// nothing mounted
return RES_ERROR;
}
MP_STATE_PORT(fs_user_mount)->readblocks[2] = MP_OBJ_NEW_SMALL_INT(sector);
MP_STATE_PORT(fs_user_mount)->readblocks[3] = mp_obj_new_bytearray_by_ref(count * 512, buff);
mp_call_method_n_kw(2, 0, MP_STATE_PORT(fs_user_mount)->readblocks);
return RES_OK;
}
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if _USE_WRITE
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber (0..) */
const BYTE *buff, /* Data to be written */
DWORD sector, /* Sector address (LBA) */
UINT count /* Number of sectors to write (1..128) */
)
{
switch (pdrv) {
case PD_FLASH:
for (int i = 0; i < count; i++) {
if (!storage_write_block(buff + i * FLASH_BLOCK_SIZE, sector + i)) {
return RES_ERROR;
}
}
return RES_OK;
#if MICROPY_HW_HAS_SDCARD
case PD_SDCARD:
if (sdcard_write_blocks(buff, sector, count) != 0) {
return RES_ERROR;
}
return RES_OK;
#endif
case PD_USER:
if (MP_STATE_PORT(fs_user_mount) == NULL) {
// nothing mounted
return RES_ERROR;
}
if (MP_STATE_PORT(fs_user_mount)->writeblocks[0] == MP_OBJ_NULL) {
// read-only block device
return RES_ERROR;
}
MP_STATE_PORT(fs_user_mount)->writeblocks[2] = MP_OBJ_NEW_SMALL_INT(sector);
MP_STATE_PORT(fs_user_mount)->writeblocks[3] = mp_obj_new_bytearray_by_ref(count * 512, (void*)buff);
mp_call_method_n_kw(2, 0, MP_STATE_PORT(fs_user_mount)->writeblocks);
return RES_OK;
}
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
#if _USE_IOCTL
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
switch (pdrv) {
case PD_FLASH:
switch (cmd) {
case CTRL_SYNC:
storage_flush();
return RES_OK;
case GET_BLOCK_SIZE:
*((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) block size
return RES_OK;
}
break;
#if MICROPY_HW_HAS_SDCARD
case PD_SDCARD:
switch (cmd) {
case CTRL_SYNC:
return RES_OK;
case GET_BLOCK_SIZE:
*((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) block size
return RES_OK;
}
break;
#endif
case PD_USER:
if (MP_STATE_PORT(fs_user_mount) == NULL) {
// nothing mounted
return RES_ERROR;
}
switch (cmd) {
case CTRL_SYNC:
if (MP_STATE_PORT(fs_user_mount)->sync[0] != MP_OBJ_NULL) {
mp_call_method_n_kw(0, 0, MP_STATE_PORT(fs_user_mount)->sync);
}
return RES_OK;
case GET_BLOCK_SIZE:
*((DWORD*)buff) = 1; // high-level sector erase size in units of the small (512) bl
return RES_OK;
case GET_SECTOR_COUNT: {
mp_obj_t ret = mp_call_method_n_kw(0, 0, MP_STATE_PORT(fs_user_mount)->count);
*((DWORD*)buff) = mp_obj_get_int(ret);
return RES_OK;
}
}
break;
}
return RES_PARERR;
}
#endif
DWORD get_fattime (
void
)
{
rtc_init_finalise();
RTC_TimeTypeDef time;
RTC_DateTypeDef date;
HAL_RTC_GetTime(&RTCHandle, &time, FORMAT_BIN);
HAL_RTC_GetDate(&RTCHandle, &date, FORMAT_BIN);
return ((2000 + date.Year - 1980) << 25) | ((date.Month) << 21) | ((date.Date) << 16) | ((time.Hours) << 11) | ((time.Minutes) << 5) | (time.Seconds / 2);
}