micropython/stmhal/sdcard.c
Damien George 04b9147e15 Add license header to (almost) all files.
Blanket wide to all .c and .h files.  Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.

Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
2014-05-03 23:27:38 +01:00

276 lines
8.2 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// TODO make it work with DMA
#include <stm32f4xx_hal.h>
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "sdcard.h"
#include "pin.h"
#include "genhdr/pins.h"
#if MICROPY_HW_HAS_SDCARD
static SD_HandleTypeDef sd_handle;
void sdcard_init(void) {
GPIO_InitTypeDef GPIO_Init_Structure;
// invalidate the sd_handle
sd_handle.Instance = NULL;
// configure SD GPIO
// we do this here an not in HAL_SD_MspInit because it apparently
// makes it more robust to have the pins always pulled high
GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP;
GPIO_Init_Structure.Pull = GPIO_PULLUP;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Alternate = GPIO_AF12_SDIO;
GPIO_Init_Structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12;
HAL_GPIO_Init(GPIOC, &GPIO_Init_Structure);
GPIO_Init_Structure.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure);
// configure the SD card detect pin
// we do this here so we can detect if the SD card is inserted before powering it on
GPIO_Init_Structure.Mode = GPIO_MODE_INPUT;
GPIO_Init_Structure.Pull = MICROPY_HW_SDCARD_DETECT_PULL;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Pin = MICROPY_HW_SDCARD_DETECT_PIN.pin_mask;
HAL_GPIO_Init(MICROPY_HW_SDCARD_DETECT_PIN.gpio, &GPIO_Init_Structure);
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
// enable SDIO clock
__SDIO_CLK_ENABLE();
// GPIO have already been initialised by sdcard_init
// interrupts are not used at the moment
// they are needed only for DMA transfer (I think...)
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
__SDIO_CLK_DISABLE();
}
bool sdcard_is_present(void) {
return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
}
bool sdcard_power_on(void) {
if (!sdcard_is_present()) {
return false;
}
// SD device interface configuration
sd_handle.Instance = SDIO;
sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B;
sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV;
// init the SD interface
HAL_SD_CardInfoTypedef cardinfo;
if (HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK) {
goto error;
}
// configure the SD bus width for wide operation
if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) {
HAL_SD_DeInit(&sd_handle);
goto error;
}
return true;
error:
sd_handle.Instance = NULL;
return false;
}
void sdcard_power_off(void) {
HAL_SD_DeInit(&sd_handle);
sd_handle.Instance = NULL;
}
uint64_t sdcard_get_capacity_in_bytes(void) {
if (sd_handle.Instance == NULL) {
return 0;
}
HAL_SD_CardInfoTypedef cardinfo;
HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
return cardinfo.CardCapacity;
}
bool sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
if (HAL_SD_ReadBlocks(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks) != SD_OK) {
return false;
}
return true;
}
bool sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
if (HAL_SD_WriteBlocks(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks) != SD_OK) {
return false;
}
return true;
}
#if 0
DMA not implemented
bool sdcard_read_blocks_dma(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
// check that dest pointer is aligned on a 4-byte boundary
if (((uint32_t)dest & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
// do the read
if (HAL_SD_ReadBlocks_DMA(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE) != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
if (HAL_SD_CheckReadOperation(&sd_handle, 100000000) != SD_OK) {
return false;
}
return true;
}
bool sdcard_write_blocks_dma(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
// check that src pointer is aligned on a 4-byte boundary
if (((uint32_t)src & 3) != 0) {
return false;
}
// check that SD card is initialised
if (sd_handle.Instance == NULL) {
return false;
}
SD_Error status;
status = HAL_SD_WriteBlock_DMA(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks);
if (status != SD_OK) {
return false;
}
// wait for DMA transfer to finish, with a large timeout
status = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
if (status != SD_OK) {
return false;
}
return true;
}
#endif
/******************************************************************************/
// Micro Python bindings
static mp_obj_t sd_present(mp_obj_t self) {
return MP_BOOL(sdcard_is_present());
}
static MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);
static mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
bool result;
if (mp_obj_is_true(state)) {
result = sdcard_power_on();
} else {
sdcard_power_off();
result = true;
}
return MP_BOOL(result);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);
static mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
if (!sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1)) {
m_free(dest, SDCARD_BLOCK_SIZE);
return mp_const_none;
}
return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
static MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);
STATIC const mp_map_elem_t sdcard_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj },
};
STATIC MP_DEFINE_CONST_DICT(sdcard_locals_dict, sdcard_locals_dict_table);
static const mp_obj_type_t sdcard_type = {
{ &mp_type_type },
.name = MP_QSTR_SDcard,
.locals_dict = (mp_obj_t)&sdcard_locals_dict,
};
const mp_obj_base_t pyb_sdcard_obj = {&sdcard_type};
#endif // MICROPY_HW_HAS_SDCARD