micropython/ports/nrf/modules/music/modmusic.c
Glenn Ruben Bakke 6e8a605500 nrf/modules/machine/pin: Add support for IRQ on Pin's
This patch ads irq method to the pin object. Handlers
registered in the irq method will be kept as part of the
ROOT_POINTERS.

In order to resolve which pin object is the root of the
IRQ, the pin_find has been extended to also be able to
search up Pin objects based on mp_int_t pin number.
This also implies that the Pin.new API is now also supporting
creation of Pin objects based on the integer value of the
pin instead of old style mandating string name of the Pin.

All boards have been updated to use real pin number from
0-48 instead of pin_Pxx for UART/SPI and music module pins.

UART/SPI/modmusic has also been updated to use pin number
provided directly or look up the Pin object based on the
integer value of the pin (modmusic).

Pin generation has been updated to create a list of pins, where
the board/cpu dicts are now refering to an index in this list
instead of having one const declaration for each pin. This new
const table makes it possible to iterate through all pins generated
in order to locate the correct Pin object.
2018-07-18 17:12:26 +10:00

513 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mphal.h"
#if MICROPY_PY_MUSIC
// #include "microbitobj.h"
// #include "microbitmusic.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objstr.h"
#include "modmusic.h"
#include "musictunes.h"
#include "softpwm.h"
#include "ticker.h"
#include "pin.h"
#include "genhdr/pins.h"
#define DEFAULT_BPM 120
#define DEFAULT_TICKS 4 // i.e. 4 ticks per beat
#define DEFAULT_OCTAVE 4 // C4 is middle C
#define DEFAULT_DURATION 4 // Crotchet
#define ARTICULATION_MS 10 // articulation between notes in milliseconds
typedef struct _music_data_t {
uint16_t bpm;
uint16_t ticks;
// store these to simplify the writing process
uint8_t last_octave;
uint8_t last_duration;
// Asynchronous parts.
volatile uint8_t async_state;
bool async_loop;
uint32_t async_wait_ticks;
uint16_t async_notes_len;
uint16_t async_notes_index;
const pin_obj_t *async_pin;
mp_obj_t async_note;
} music_data_t;
enum {
ASYNC_MUSIC_STATE_IDLE,
ASYNC_MUSIC_STATE_NEXT_NOTE,
ASYNC_MUSIC_STATE_ARTICULATE,
};
#define music_data MP_STATE_PORT(music_data)
extern volatile uint32_t ticks;
STATIC uint32_t start_note(const char *note_str, size_t note_len, const pin_obj_t *pin);
void microbit_music_init0(void) {
ticker_register_low_pri_callback(microbit_music_tick);
}
void microbit_music_tick(void) {
if (music_data == NULL) {
// music module not yet imported
return;
}
if (music_data->async_state == ASYNC_MUSIC_STATE_IDLE) {
// nothing to do
return;
}
if (ticks < music_data->async_wait_ticks) {
// need to wait for timeout to expire
return;
}
if (music_data->async_state == ASYNC_MUSIC_STATE_ARTICULATE) {
// turn off output and rest
pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
music_data->async_wait_ticks = ticks + ARTICULATION_MS;
music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;
} else if (music_data->async_state == ASYNC_MUSIC_STATE_NEXT_NOTE) {
// play next note
if (music_data->async_notes_index >= music_data->async_notes_len) {
if (music_data->async_loop) {
music_data->async_notes_index = 0;
} else {
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
// TODO: microbit_obj_pin_free(music_data->async_pin);
music_data->async_pin = NULL;
return;
}
}
mp_obj_t note;
if (music_data->async_notes_len == 1) {
note = music_data->async_note;
} else {
note = ((mp_obj_t*)music_data->async_note)[music_data->async_notes_index];
}
if (note == mp_const_none) {
// a rest (is this even used anymore?)
pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
music_data->async_wait_ticks = 60000 / music_data->bpm;
music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;
} else {
// a note
mp_uint_t note_len;
const char *note_str = mp_obj_str_get_data(note, &note_len);
uint32_t delay_on = start_note(note_str, note_len, music_data->async_pin);
music_data->async_wait_ticks = ticks + delay_on;
music_data->async_notes_index += 1;
music_data->async_state = ASYNC_MUSIC_STATE_ARTICULATE;
}
}
}
STATIC void wait_async_music_idle(void) {
// wait for the async music state to become idle
while (music_data->async_state != ASYNC_MUSIC_STATE_IDLE) {
// allow CTRL-C to stop the music
if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) {
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
break;
}
}
}
STATIC uint32_t start_note(const char *note_str, size_t note_len, const pin_obj_t *pin) {
pwm_set_duty_cycle(pin->pin, 128); // TODO: remove pin setting.
// [NOTE](#|b)(octave)(:length)
// technically, c4 is middle c, so we'll go with that...
// if we define A as 0 and G as 7, then we can use the following
// array of us periods
// these are the periods of note4 (the octave ascending from middle c) from A->B then C->G
STATIC uint16_t periods_us[] = {2273, 2025, 3822, 3405, 3034, 2863, 2551};
// A#, -, C#, D#, -, F#, G#
STATIC uint16_t periods_sharps_us[] = {2145, 0, 3608, 3214, 0, 2703, 2408};
// we'll represent the note as an integer (A=0, G=6)
// TODO: validate the note
uint8_t note_index = (note_str[0] & 0x1f) - 1;
// TODO: the duration and bpm should be persistent between notes
uint32_t ms_per_tick = (60000 / music_data->bpm) / music_data->ticks;
int8_t octave = 0;
bool sharp = false;
size_t current_position = 1;
// parse sharp or flat
if (current_position < note_len && (note_str[current_position] == '#' || note_str[current_position] == 'b')) {
if (note_str[current_position] == 'b') {
// make sure we handle wrapping round gracefully
if (note_index == 0) {
note_index = 6;
} else {
note_index--;
}
// handle the unusual edge case of Cb
if (note_index == 1) {
octave--;
}
}
sharp = true;
current_position++;
}
// parse the octave
if (current_position < note_len && note_str[current_position] != ':') {
// currently this will only work with a one digit number
// use +=, since the sharp/flat code changes octave to compensate.
music_data->last_octave = (note_str[current_position] & 0xf);
current_position++;
}
octave += music_data->last_octave;
// parse the duration
if (current_position < note_len && note_str[current_position] == ':') {
// I'll make this handle up to two digits for the time being.
current_position++;
if (current_position < note_len) {
music_data->last_duration = note_str[current_position] & 0xf;
current_position++;
if (current_position < note_len) {
music_data->last_duration *= 10;
music_data->last_duration += note_str[current_position] & 0xf;
}
} else {
// technically, this should be a syntax error, since this means
// that no duration has been specified. For the time being,
// we'll let you off :D
}
}
// play the note!
// make the octave relative to octave 4
octave -= 4;
// 18 is 'r' or 'R'
if (note_index < 10) {
uint32_t period;
if (sharp) {
if (octave >= 0) {
period = periods_sharps_us[note_index] >> octave;
}
else {
period = periods_sharps_us[note_index] << -octave;
}
} else {
if (octave >= 0) {
period = periods_us[note_index] >> octave;
}
else {
period = periods_us[note_index] << -octave;
}
}
pwm_set_period_us(period);
} else {
pwm_set_duty_cycle(pin->pin, 0); // TODO: remove pin setting.
}
// Cut off a short time from end of note so we hear articulation.
mp_int_t gap_ms = (ms_per_tick * music_data->last_duration) - ARTICULATION_MS;
if (gap_ms < ARTICULATION_MS) {
gap_ms = ARTICULATION_MS;
}
return gap_ms;
}
STATIC mp_obj_t microbit_music_reset(void) {
music_data->bpm = DEFAULT_BPM;
music_data->ticks = DEFAULT_TICKS;
music_data->last_octave = DEFAULT_OCTAVE;
music_data->last_duration = DEFAULT_DURATION;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(microbit_music_reset_obj, microbit_music_reset);
STATIC mp_obj_t microbit_music_get_tempo(void) {
mp_obj_t tempo_tuple[2];
tempo_tuple[0] = mp_obj_new_int(music_data->bpm);
tempo_tuple[1] = mp_obj_new_int(music_data->ticks);
return mp_obj_new_tuple(2, tempo_tuple);
}
MP_DEFINE_CONST_FUN_OBJ_0(microbit_music_get_tempo_obj, microbit_music_get_tempo);
STATIC mp_obj_t microbit_music_stop(mp_uint_t n_args, const mp_obj_t *args) {
const pin_obj_t *pin;
if (n_args == 0) {
#ifdef MICROPY_HW_MUSIC_PIN
pin = pin_find(MP_OBJ_NEW_SMALL_INT(MICROPY_HW_MUSIC_PIN));
#else
mp_raise_ValueError("pin parameter not given");
#endif
} else {
pin = (pin_obj_t *)args[0];
}
(void)pin;
// Raise exception if the pin we are trying to stop is not in a compatible mode.
// TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);
pwm_set_duty_cycle(pin->pin, 0); // TODO: remove pin setting.
// TODO: microbit_obj_pin_free(pin);
music_data->async_pin = NULL;
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(microbit_music_stop_obj, 0, 1, microbit_music_stop);
STATIC mp_obj_t microbit_music_play(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_music, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_pin, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_wait, MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_loop, MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// reset octave and duration so tunes always play the same
music_data->last_octave = DEFAULT_OCTAVE;
music_data->last_duration = DEFAULT_DURATION;
// get either a single note or a list of notes
mp_uint_t len;
mp_obj_t *items;
if (MP_OBJ_IS_STR_OR_BYTES(args[0].u_obj)) {
len = 1;
items = &args[0].u_obj;
} else {
mp_obj_get_array(args[0].u_obj, &len, &items);
}
// Release the previous pin
// TODO: microbit_obj_pin_free(music_data->async_pin);
music_data->async_pin = NULL;
// get the pin to play on
const pin_obj_t *pin;
if (args[1].u_obj == MP_OBJ_NULL) {
#ifdef MICROPY_HW_MUSIC_PIN
pin = pin_find(MP_OBJ_NEW_SMALL_INT(MICROPY_HW_MUSIC_PIN));
#else
mp_raise_ValueError("pin parameter not given");
#endif
} else {
pin = (pin_obj_t *)args[1].u_obj;
}
// TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);
// start the tune running in the background
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
music_data->async_wait_ticks = ticks;
music_data->async_loop = args[3].u_bool;
music_data->async_notes_len = len;
music_data->async_notes_index = 0;
if (len == 1) {
// If a string was passed as a single note then we can't store a pointer
// to args[0].u_obj, so instead store the single string directly (also
// works if a tuple/list of one element was passed).
music_data->async_note = items[0];
} else {
music_data->async_note = items;
}
music_data->async_pin = pin;
music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;
if (args[2].u_bool) {
// wait for tune to finish
wait_async_music_idle();
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_play_obj, 0, microbit_music_play);
STATIC mp_obj_t microbit_music_pitch(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_duration, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_pin, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_wait, MP_ARG_BOOL, {.u_bool = true} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the parameters
mp_uint_t frequency = args[0].u_int;
mp_int_t duration = args[1].u_int;
// get the pin to play on
const pin_obj_t *pin;
if (args[2].u_obj == MP_OBJ_NULL) {
#ifdef MICROPY_HW_MUSIC_PIN
pin = pin_find(MP_OBJ_NEW_SMALL_INT(MICROPY_HW_MUSIC_PIN));
#else
mp_raise_ValueError("pin parameter not given");
#endif
} else {
pin = (pin_obj_t *)args[2].u_obj;
}
// Update pin modes
//TODO: microbit_obj_pin_free(music_data->async_pin);
music_data->async_pin = NULL;
//TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);
bool wait = args[3].u_bool;
pwm_set_duty_cycle(pin->pin, 128); // TODO: remove pin setting.
if (frequency == 0) {
//TODO: pwm_release(pin->name);
} else if (pwm_set_period_us(1000000/frequency)) {
pwm_release(pin->pin); // TODO: remove pin setting.
mp_raise_ValueError("invalid pitch");
}
if (duration >= 0) {
// use async machinery to stop the pitch after the duration
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
music_data->async_wait_ticks = ticks + duration;
music_data->async_loop = false;
music_data->async_notes_len = 0;
music_data->async_notes_index = 0;
music_data->async_note = NULL;
music_data->async_pin = pin;
music_data->async_state = ASYNC_MUSIC_STATE_ARTICULATE;
if (wait) {
// wait for the pitch to finish
wait_async_music_idle();
}
} else {
// don't block here, since there's no reason to leave a pitch forever in a blocking C function
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_pitch_obj, 0, microbit_music_pitch);
STATIC mp_obj_t microbit_music_set_tempo(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_ticks, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bpm, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (args[0].u_int != 0) {
// set ticks
music_data->ticks = args[0].u_int;
}
if (args[1].u_int != 0) {
music_data->bpm = args[1].u_int;
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_set_tempo_obj, 0, microbit_music_set_tempo);
static mp_obj_t music_init(void) {
music_data = m_new_obj(music_data_t);
music_data->bpm = DEFAULT_BPM;
music_data->ticks = DEFAULT_TICKS;
music_data->last_octave = DEFAULT_OCTAVE;
music_data->last_duration = DEFAULT_DURATION;
music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
music_data->async_pin = NULL;
music_data->async_note = NULL;
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(music___init___obj, music_init);
STATIC const mp_rom_map_elem_t microbit_music_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___init__), MP_ROM_PTR(&music___init___obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&microbit_music_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_tempo), MP_ROM_PTR(&microbit_music_set_tempo_obj) },
{ MP_ROM_QSTR(MP_QSTR_get_tempo), MP_ROM_PTR(&microbit_music_get_tempo_obj) },
{ MP_ROM_QSTR(MP_QSTR_play), MP_ROM_PTR(&microbit_music_play_obj) },
{ MP_ROM_QSTR(MP_QSTR_pitch), MP_ROM_PTR(&microbit_music_pitch_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&microbit_music_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_DADADADUM), MP_ROM_PTR(&microbit_music_tune_dadadadum_obj) },
{ MP_ROM_QSTR(MP_QSTR_ENTERTAINER), MP_ROM_PTR(&microbit_music_tune_entertainer_obj) },
{ MP_ROM_QSTR(MP_QSTR_PRELUDE), MP_ROM_PTR(&microbit_music_tune_prelude_obj) },
{ MP_ROM_QSTR(MP_QSTR_ODE), MP_ROM_PTR(&microbit_music_tune_ode_obj) },
{ MP_ROM_QSTR(MP_QSTR_NYAN), MP_ROM_PTR(&microbit_music_tune_nyan_obj) },
{ MP_ROM_QSTR(MP_QSTR_RINGTONE), MP_ROM_PTR(&microbit_music_tune_ringtone_obj) },
{ MP_ROM_QSTR(MP_QSTR_FUNK), MP_ROM_PTR(&microbit_music_tune_funk_obj) },
{ MP_ROM_QSTR(MP_QSTR_BLUES), MP_ROM_PTR(&microbit_music_tune_blues_obj) },
{ MP_ROM_QSTR(MP_QSTR_BIRTHDAY), MP_ROM_PTR(&microbit_music_tune_birthday_obj) },
{ MP_ROM_QSTR(MP_QSTR_WEDDING), MP_ROM_PTR(&microbit_music_tune_wedding_obj) },
{ MP_ROM_QSTR(MP_QSTR_FUNERAL), MP_ROM_PTR(&microbit_music_tune_funeral_obj) },
{ MP_ROM_QSTR(MP_QSTR_PUNCHLINE), MP_ROM_PTR(&microbit_music_tune_punchline_obj) },
{ MP_ROM_QSTR(MP_QSTR_PYTHON), MP_ROM_PTR(&microbit_music_tune_python_obj) },
{ MP_ROM_QSTR(MP_QSTR_BADDY), MP_ROM_PTR(&microbit_music_tune_baddy_obj) },
{ MP_ROM_QSTR(MP_QSTR_CHASE), MP_ROM_PTR(&microbit_music_tune_chase_obj) },
{ MP_ROM_QSTR(MP_QSTR_BA_DING), MP_ROM_PTR(&microbit_music_tune_ba_ding_obj) },
{ MP_ROM_QSTR(MP_QSTR_WAWAWAWAA), MP_ROM_PTR(&microbit_music_tune_wawawawaa_obj) },
{ MP_ROM_QSTR(MP_QSTR_JUMP_UP), MP_ROM_PTR(&microbit_music_tune_jump_up_obj) },
{ MP_ROM_QSTR(MP_QSTR_JUMP_DOWN), MP_ROM_PTR(&microbit_music_tune_jump_down_obj) },
{ MP_ROM_QSTR(MP_QSTR_POWER_UP), MP_ROM_PTR(&microbit_music_tune_power_up_obj) },
{ MP_ROM_QSTR(MP_QSTR_POWER_DOWN), MP_ROM_PTR(&microbit_music_tune_power_down_obj) },
};
STATIC MP_DEFINE_CONST_DICT(microbit_music_locals_dict, microbit_music_locals_dict_table);
const mp_obj_module_t music_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&microbit_music_locals_dict,
};
#endif // MICROPY_PY_MUSIC