micropython/ports/stm32/usbd_cdc_interface.c
Damien George 47ecbbbecb stm32/usb: Add ability to have 2x VCP interfaces on the one USB device.
This patch adds the configuration MICROPY_HW_USB_ENABLE_CDC2 which enables
a new USB device configuration at runtime: VCP+VCP+MSC.  It will give two
independent VCP interfaces available via pyb.USB_VCP(0) and pyb.USB_VCP(1).
The first one is the usual one and has the REPL on it.  The second one is
available for general use.

This configuration is disabled by default because if the mode is not used
then it takes up about 2200 bytes of RAM.  Also, F4 MCUs can't support this
mode on their USB FS peripheral (eg PYBv1.x) because they don't have enough
endpoints.  The USB HS peripheral of an F4 supports it, as well as both the
USB FS and USB HS peripherals of F7 MCUs.
2018-05-14 23:44:45 +10:00

363 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* Taken from ST Cube library and heavily modified. See below for original
* copyright header.
*/
/**
******************************************************************************
* @file USB_Device/CDC_Standalone/Src/usbd_cdc_interface.c
* @author MCD Application Team
* @version V1.0.1
* @date 26-February-2014
* @brief Source file for USBD CDC interface
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include <stdbool.h>
#include <stdint.h>
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"
#include "pendsv.h"
#include "py/obj.h"
#include "lib/utils/interrupt_char.h"
#include "irq.h"
// CDC control commands
#define CDC_SEND_ENCAPSULATED_COMMAND 0x00
#define CDC_GET_ENCAPSULATED_RESPONSE 0x01
#define CDC_SET_COMM_FEATURE 0x02
#define CDC_GET_COMM_FEATURE 0x03
#define CDC_CLEAR_COMM_FEATURE 0x04
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define CDC_SEND_BREAK 0x23
uint8_t *usbd_cdc_init(usbd_cdc_state_t *cdc_in) {
usbd_cdc_itf_t *cdc = (usbd_cdc_itf_t*)cdc_in;
// Reset all the CDC state
// Note: we don't reset tx_buf_ptr_in in order to allow the output buffer to
// be filled (by usbd_cdc_tx_always) before the USB device is connected.
cdc->rx_buf_put = 0;
cdc->rx_buf_get = 0;
cdc->tx_buf_ptr_out = 0;
cdc->tx_buf_ptr_out_shadow = 0;
cdc->tx_buf_ptr_wait_count = 0;
cdc->tx_need_empty_packet = 0;
cdc->dev_is_connected = 0;
#if MICROPY_HW_USB_ENABLE_CDC2
cdc->attached_to_repl = &cdc->base == cdc->base.usbd->cdc;
#else
cdc->attached_to_repl = 1;
#endif
// Return the buffer to place the first USB OUT packet
return cdc->rx_packet_buf;
}
// Manage the CDC class requests
// cmd: command code
// pbuf: buffer containing command data (request parameters)
// length: number of data to be sent (in bytes)
// Returns USBD_OK if all operations are OK else USBD_FAIL
int8_t usbd_cdc_control(usbd_cdc_state_t *cdc_in, uint8_t cmd, uint8_t* pbuf, uint16_t length) {
usbd_cdc_itf_t *cdc = (usbd_cdc_itf_t*)cdc_in;
switch (cmd) {
case CDC_SEND_ENCAPSULATED_COMMAND:
/* Add your code here */
break;
case CDC_GET_ENCAPSULATED_RESPONSE:
/* Add your code here */
break;
case CDC_SET_COMM_FEATURE:
/* Add your code here */
break;
case CDC_GET_COMM_FEATURE:
/* Add your code here */
break;
case CDC_CLEAR_COMM_FEATURE:
/* Add your code here */
break;
case CDC_SET_LINE_CODING:
#if 0
LineCoding.bitrate = (uint32_t)(pbuf[0] | (pbuf[1] << 8) |\
(pbuf[2] << 16) | (pbuf[3] << 24));
LineCoding.format = pbuf[4];
LineCoding.paritytype = pbuf[5];
LineCoding.datatype = pbuf[6];
/* Set the new configuration */
#endif
break;
case CDC_GET_LINE_CODING:
/* Add your code here */
pbuf[0] = (uint8_t)(115200);
pbuf[1] = (uint8_t)(115200 >> 8);
pbuf[2] = (uint8_t)(115200 >> 16);
pbuf[3] = (uint8_t)(115200 >> 24);
pbuf[4] = 0; // stop bits (1)
pbuf[5] = 0; // parity (none)
pbuf[6] = 8; // number of bits (8)
break;
case CDC_SET_CONTROL_LINE_STATE:
cdc->dev_is_connected = length & 1; // wValue is passed in Len (bit of a hack)
break;
case CDC_SEND_BREAK:
/* Add your code here */
break;
default:
break;
}
return USBD_OK;
}
// This function is called to process outgoing data. We hook directly into the
// SOF (start of frame) callback so that it is called exactly at the time it is
// needed (reducing latency), and often enough (increasing bandwidth).
static void usbd_cdc_sof(PCD_HandleTypeDef *hpcd, usbd_cdc_itf_t *cdc) {
if (cdc == NULL || !cdc->dev_is_connected) {
// CDC device is not connected to a host, so we are unable to send any data
return;
}
if (cdc->tx_buf_ptr_out == cdc->tx_buf_ptr_in && !cdc->tx_need_empty_packet) {
// No outstanding data to send
return;
}
if (cdc->tx_buf_ptr_out != cdc->tx_buf_ptr_out_shadow) {
// We have sent data and are waiting for the low-level USB driver to
// finish sending it over the USB in-endpoint.
// SOF occurs every 1ms, so we have a 500 * 1ms = 500ms timeout
// We have a relatively large timeout because the USB host may be busy
// doing other things and we must give it a chance to read our data.
if (cdc->tx_buf_ptr_wait_count < 500) {
USB_OTG_GlobalTypeDef *USBx = hpcd->Instance;
if (USBx_INEP(cdc->base.in_ep & 0x7f)->DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ) {
// USB in-endpoint is still reading the data
cdc->tx_buf_ptr_wait_count++;
return;
}
}
cdc->tx_buf_ptr_out = cdc->tx_buf_ptr_out_shadow;
}
if (cdc->tx_buf_ptr_out_shadow != cdc->tx_buf_ptr_in || cdc->tx_need_empty_packet) {
uint32_t buffptr;
uint32_t buffsize;
if (cdc->tx_buf_ptr_out_shadow > cdc->tx_buf_ptr_in) { // rollback
buffsize = USBD_CDC_TX_DATA_SIZE - cdc->tx_buf_ptr_out_shadow;
} else {
buffsize = cdc->tx_buf_ptr_in - cdc->tx_buf_ptr_out_shadow;
}
buffptr = cdc->tx_buf_ptr_out_shadow;
if (USBD_CDC_TransmitPacket(&cdc->base, buffsize, &cdc->tx_buf[buffptr]) == USBD_OK) {
cdc->tx_buf_ptr_out_shadow += buffsize;
if (cdc->tx_buf_ptr_out_shadow == USBD_CDC_TX_DATA_SIZE) {
cdc->tx_buf_ptr_out_shadow = 0;
}
cdc->tx_buf_ptr_wait_count = 0;
// According to the USB specification, a packet size of 64 bytes (CDC_DATA_FS_MAX_PACKET_SIZE)
// gets held at the USB host until the next packet is sent. This is because a
// packet of maximum size is considered to be part of a longer chunk of data, and
// the host waits for all data to arrive (ie, waits for a packet < max packet size).
// To flush a packet of exactly max packet size, we need to send a zero-size packet.
// See eg http://www.cypress.com/?id=4&rID=92719
cdc->tx_need_empty_packet = (buffsize > 0 && buffsize % usbd_cdc_max_packet(cdc->base.usbd->pdev) == 0 && cdc->tx_buf_ptr_out_shadow == cdc->tx_buf_ptr_in);
}
}
}
void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) {
usbd_cdc_msc_hid_state_t *usbd = ((USBD_HandleTypeDef*)hpcd->pData)->pClassData;
usbd_cdc_sof(hpcd, (usbd_cdc_itf_t*)usbd->cdc);
#if MICROPY_HW_USB_ENABLE_CDC2
usbd_cdc_sof(hpcd, (usbd_cdc_itf_t*)usbd->cdc2);
#endif
}
// Data received over USB OUT endpoint is processed here.
// len: number of bytes received into the buffer we passed to USBD_CDC_ReceivePacket
// Returns USBD_OK if all operations are OK else USBD_FAIL
int8_t usbd_cdc_receive(usbd_cdc_state_t *cdc_in, size_t len) {
usbd_cdc_itf_t *cdc = (usbd_cdc_itf_t*)cdc_in;
// copy the incoming data into the circular buffer
for (const uint8_t *src = cdc->rx_packet_buf, *top = cdc->rx_packet_buf + len; src < top; ++src) {
if (cdc->attached_to_repl && mp_interrupt_char != -1 && *src == mp_interrupt_char) {
pendsv_kbd_intr();
} else {
uint16_t next_put = (cdc->rx_buf_put + 1) & (USBD_CDC_RX_DATA_SIZE - 1);
if (next_put == cdc->rx_buf_get) {
// overflow, we just discard the rest of the chars
break;
}
cdc->rx_user_buf[cdc->rx_buf_put] = *src;
cdc->rx_buf_put = next_put;
}
}
// initiate next USB packet transfer
USBD_CDC_ReceivePacket(&cdc->base, cdc->rx_packet_buf);
return USBD_OK;
}
int usbd_cdc_tx_half_empty(usbd_cdc_itf_t *cdc) {
int32_t tx_waiting = (int32_t)cdc->tx_buf_ptr_in - (int32_t)cdc->tx_buf_ptr_out;
if (tx_waiting < 0) {
tx_waiting += USBD_CDC_TX_DATA_SIZE;
}
return tx_waiting <= USBD_CDC_TX_DATA_SIZE / 2;
}
// timout in milliseconds.
// Returns number of bytes written to the device.
int usbd_cdc_tx(usbd_cdc_itf_t *cdc, const uint8_t *buf, uint32_t len, uint32_t timeout) {
for (uint32_t i = 0; i < len; i++) {
// Wait until the device is connected and the buffer has space, with a given timeout
uint32_t start = HAL_GetTick();
while (!cdc->dev_is_connected || ((cdc->tx_buf_ptr_in + 1) & (USBD_CDC_TX_DATA_SIZE - 1)) == cdc->tx_buf_ptr_out) {
// Wraparound of tick is taken care of by 2's complement arithmetic.
if (HAL_GetTick() - start >= timeout) {
// timeout
return i;
}
if (query_irq() == IRQ_STATE_DISABLED) {
// IRQs disabled so buffer will never be drained; return immediately
return i;
}
__WFI(); // enter sleep mode, waiting for interrupt
}
// Write data to device buffer
cdc->tx_buf[cdc->tx_buf_ptr_in] = buf[i];
cdc->tx_buf_ptr_in = (cdc->tx_buf_ptr_in + 1) & (USBD_CDC_TX_DATA_SIZE - 1);
}
// Success, return number of bytes read
return len;
}
// Always write all of the data to the device tx buffer, even if the
// device is not connected, or if the buffer is full. Has a small timeout
// to wait for the buffer to be drained, in the case the device is connected.
void usbd_cdc_tx_always(usbd_cdc_itf_t *cdc, const uint8_t *buf, uint32_t len) {
for (int i = 0; i < len; i++) {
// If the CDC device is not connected to the host then we don't have anyone to receive our data.
// The device may become connected in the future, so we should at least try to fill the buffer
// and hope that it doesn't overflow by the time the device connects.
// If the device is not connected then we should go ahead and fill the buffer straight away,
// ignoring overflow. Otherwise, we should make sure that we have enough room in the buffer.
if (cdc->dev_is_connected) {
// If the buffer is full, wait until it gets drained, with a timeout of 500ms
// (wraparound of tick is taken care of by 2's complement arithmetic).
uint32_t start = HAL_GetTick();
while (((cdc->tx_buf_ptr_in + 1) & (USBD_CDC_TX_DATA_SIZE - 1)) == cdc->tx_buf_ptr_out && HAL_GetTick() - start <= 500) {
if (query_irq() == IRQ_STATE_DISABLED) {
// IRQs disabled so buffer will never be drained; exit loop
break;
}
__WFI(); // enter sleep mode, waiting for interrupt
}
// Some unused code that makes sure the low-level USB buffer is drained.
// Waiting for low-level is handled in HAL_PCD_SOFCallback.
/*
start = HAL_GetTick();
PCD_HandleTypeDef *hpcd = hUSBDDevice.pData;
if (hpcd->IN_ep[0x83 & 0x7f].is_in) {
//volatile uint32_t *xfer_count = &hpcd->IN_ep[0x83 & 0x7f].xfer_count;
//volatile uint32_t *xfer_len = &hpcd->IN_ep[0x83 & 0x7f].xfer_len;
USB_OTG_GlobalTypeDef *USBx = hpcd->Instance;
while (
// *xfer_count < *xfer_len // using this works
// (USBx_INEP(3)->DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ) // using this works
&& HAL_GetTick() - start <= 2000) {
__WFI(); // enter sleep mode, waiting for interrupt
}
}
*/
}
cdc->tx_buf[cdc->tx_buf_ptr_in] = buf[i];
cdc->tx_buf_ptr_in = (cdc->tx_buf_ptr_in + 1) & (USBD_CDC_TX_DATA_SIZE - 1);
}
}
// Returns number of bytes in the rx buffer.
int usbd_cdc_rx_num(usbd_cdc_itf_t *cdc) {
int32_t rx_waiting = (int32_t)cdc->rx_buf_put - (int32_t)cdc->rx_buf_get;
if (rx_waiting < 0) {
rx_waiting += USBD_CDC_RX_DATA_SIZE;
}
return rx_waiting;
}
// timout in milliseconds.
// Returns number of bytes read from the device.
int usbd_cdc_rx(usbd_cdc_itf_t *cdc, uint8_t *buf, uint32_t len, uint32_t timeout) {
// loop to read bytes
for (uint32_t i = 0; i < len; i++) {
// Wait until we have at least 1 byte to read
uint32_t start = HAL_GetTick();
while (cdc->rx_buf_put == cdc->rx_buf_get) {
// Wraparound of tick is taken care of by 2's complement arithmetic.
if (HAL_GetTick() - start >= timeout) {
// timeout
return i;
}
if (query_irq() == IRQ_STATE_DISABLED) {
// IRQs disabled so buffer will never be filled; return immediately
return i;
}
__WFI(); // enter sleep mode, waiting for interrupt
}
// Copy byte from device to user buffer
buf[i] = cdc->rx_user_buf[cdc->rx_buf_get];
cdc->rx_buf_get = (cdc->rx_buf_get + 1) & (USBD_CDC_RX_DATA_SIZE - 1);
}
// Success, return number of bytes read
return len;
}