#include #include #include #include #include #include #include #include #include #include #include #include #include #include "std.h" #include "misc.h" #include "ff.h" #include "mpconfig.h" #include "qstr.h" #include "nlr.h" #include "misc.h" #include "lexer.h" #include "lexerfatfs.h" #include "parse.h" #include "obj.h" #include "compile.h" #include "runtime0.h" #include "runtime.h" #include "repl.h" #include "gc.h" #include "gccollect.h" #include "systick.h" #include "led.h" #include "servo.h" #include "lcd.h" #include "storage.h" #include "mma.h" #include "usart.h" #include "usb.h" #include "timer.h" #include "audio.h" #include "pybwlan.h" #include "i2c.h" #include "usrsw.h" #include "adc.h" #include "rtc.h" #include "file.h" int errno; static FATFS fatfs0; void flash_error(int n) { for (int i = 0; i < n; i++) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_R2, 0); sys_tick_delay_ms(250); led_state(PYB_LED_R1, 0); led_state(PYB_LED_R2, 1); sys_tick_delay_ms(250); } led_state(PYB_LED_R2, 0); } void __fatal_error(const char *msg) { #if MICROPY_HW_HAS_LCD lcd_print_strn("\nFATAL ERROR:\n", 14); lcd_print_strn(msg, strlen(msg)); #endif for (;;) { flash_error(1); } } static mp_obj_t pyb_config_source_dir = MP_OBJ_NULL; static mp_obj_t pyb_config_main = MP_OBJ_NULL; mp_obj_t pyb_source_dir(mp_obj_t source_dir) { if (MP_OBJ_IS_STR(source_dir)) { pyb_config_source_dir = source_dir; } return mp_const_none; } mp_obj_t pyb_main(mp_obj_t main) { if (MP_OBJ_IS_STR(main)) { pyb_config_main = main; } return mp_const_none; } // sync all file systems mp_obj_t pyb_sync(void) { storage_flush(); return mp_const_none; } mp_obj_t pyb_delay(mp_obj_t count) { sys_tick_delay_ms(mp_obj_get_int(count)); return mp_const_none; } void fatality(void) { led_state(PYB_LED_R1, 1); led_state(PYB_LED_G1, 1); led_state(PYB_LED_R2, 1); led_state(PYB_LED_G2, 1); } static const char fresh_boot_py[] = "# boot.py -- run on boot-up\n" "# can run arbitrary Python, but best to keep it minimal\n" "\n" "pyb.source_dir('/src')\n" "pyb.main('main.py')\n" "#pyb.usb_usr('VCP')\n" "#pyb.usb_msd(True, 'dual partition')\n" "#pyb.flush_cache(False)\n" "#pyb.error_log('error.txt')\n" ; static const char fresh_main_py[] = "# main.py -- put your code here!\n" ; static const char *help_text = "Welcome to Micro Python!\n\n" "This is a *very* early version of Micro Python and has minimal functionality.\n\n" "Specific commands for the board:\n" " pyb.info() -- print some general information\n" " pyb.gc() -- run the garbage collector\n" " pyb.delay() -- wait for n milliseconds\n" " pyb.Led() -- create Led object for LED n (n=1,2)\n" " Led methods: on(), off()\n" " pyb.Servo() -- create Servo object for servo n (n=1,2,3,4)\n" " Servo methods: angle()\n" " pyb.switch() -- return True/False if switch pressed or not\n" " pyb.accel() -- get accelerometer values\n" " pyb.rand() -- get a 16-bit random number\n" " pyb.gpio() -- get port value (port='A4' for example)\n" " pyb.gpio(, ) -- set port value, True or False, 1 or 0\n" " pyb.ADC() -- make an analog port object (port='C0' for example)\n" " ADC methods: read()\n" ; // get some help about available functions static mp_obj_t pyb_help(void) { printf("%s", help_text); return mp_const_none; } // get lots of info about the board static mp_obj_t pyb_info(void) { // get and print unique id; 96 bits { byte *id = (byte*)0x1fff7a10; printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]); } // get and print clock speeds // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz { RCC_ClocksTypeDef rcc_clocks; RCC_GetClocksFreq(&rcc_clocks); printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency); } // to print info about memory { extern void *_sidata; extern void *_sdata; extern void *_edata; extern void *_sbss; extern void *_ebss; extern void *_estack; extern void *_etext; printf("_sidata=%p\n", &_sidata); printf("_sdata=%p\n", &_sdata); printf("_edata=%p\n", &_edata); printf("_sbss=%p\n", &_sbss); printf("_ebss=%p\n", &_ebss); printf("_estack=%p\n", &_estack); printf("_etext=%p\n", &_etext); printf("_ram_start=%p\n", &_ram_start); printf("_heap_start=%p\n", &_heap_start); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" %lu total\n", info.total); printf(" %lu : %lu\n", info.used, info.free); printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block); } // free space on flash { DWORD nclst; FATFS *fatfs; f_getfree("0:", &nclst, &fatfs); printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512)); } return mp_const_none; } // SD card test static mp_obj_t pyb_sd_test(void) { extern void sdio_init(void); sdio_init(); return mp_const_none; } static void SYSCLKConfig_STOP(void) { /* After wake-up from STOP reconfigure the system clock */ /* Enable HSE */ RCC_HSEConfig(RCC_HSE_ON); /* Wait till HSE is ready */ while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) { } /* Enable PLL */ RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */ while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) { } /* Select PLL as system clock source */ RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */ while (RCC_GetSYSCLKSource() != 0x08) { } } static mp_obj_t pyb_stop(void) { PWR_EnterSTANDBYMode(); //PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this /* Enter Stop Mode */ PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI); /* Configures system clock after wake-up from STOP: enable HSE, PLL and select * PLL as system clock source (HSE and PLL are disabled in STOP mode) */ SYSCLKConfig_STOP(); //PWR_FlashPowerDownCmd(DISABLE); return mp_const_none; } static mp_obj_t pyb_standby(void) { PWR_EnterSTANDBYMode(); return mp_const_none; } char *strdup(const char *str) { uint32_t len = strlen(str); char *s2 = m_new(char, len + 1); memcpy(s2, str, len); s2[len] = 0; return s2; } #define READLINE_HIST_SIZE (8) static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL}; void stdout_tx_str(const char *str) { if (pyb_usart_global_debug != PYB_USART_NONE) { usart_tx_str(pyb_usart_global_debug, str); } #if defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD lcd_print_str(str); #endif usb_vcp_send_str(str); } int readline(vstr_t *line, const char *prompt) { stdout_tx_str(prompt); int len = vstr_len(line); int escape = 0; int hist_num = 0; for (;;) { char c; for (;;) { #ifdef USE_HOST_MODE pyb_usb_host_process(); c = pyb_usb_host_get_keyboard(); if (c != 0) { break; } #endif if (usb_vcp_rx_any() != 0) { c = usb_vcp_rx_get(); break; } else if (pyb_usart_global_debug != PYB_USART_NONE && usart_rx_any(pyb_usart_global_debug)) { c = usart_rx_char(pyb_usart_global_debug); break; } sys_tick_delay_ms(1); if (storage_needs_flush()) { storage_flush(); } } if (escape == 0) { if (c == 4 && vstr_len(line) == len) { return 0; } else if (c == '\r') { stdout_tx_str("\r\n"); for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) { readline_hist[i] = readline_hist[i - 1]; } readline_hist[0] = strdup(vstr_str(line)); return 1; } else if (c == 27) { escape = true; } else if (c == 127) { if (vstr_len(line) > len) { vstr_cut_tail(line, 1); stdout_tx_str("\b \b"); } } else if (32 <= c && c <= 126) { vstr_add_char(line, c); stdout_tx_str(line->buf + line->len - 1); } } else if (escape == 1) { if (c == '[') { escape = 2; } else { escape = 0; } } else if (escape == 2) { escape = 0; if (c == 'A') { // up arrow if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) { // erase line for (int i = line->len - len; i > 0; i--) { stdout_tx_str("\b \b"); } // set line to history line->len = len; vstr_add_str(line, readline_hist[hist_num]); // draw line stdout_tx_str(readline_hist[hist_num]); // increase hist num hist_num += 1; } } } else { escape = 0; } sys_tick_delay_ms(10); } } void do_repl(void) { #if defined(USE_HOST_MODE) && MICROPY_HW_HAS_LCD // in host mode, we enable the LCD for the repl mp_obj_t lcd_o = rt_call_function_0(rt_load_name(qstr_from_str("LCD"))); rt_call_function_1(rt_load_attr(lcd_o, qstr_from_str("light")), mp_const_true); #endif stdout_tx_str("Micro Python build on 25/1/2014; " MICROPY_HW_BOARD_NAME " with STM32F405RG\r\n"); stdout_tx_str("Type \"help()\" for more information.\r\n"); vstr_t line; vstr_init(&line, 32); for (;;) { vstr_reset(&line); int ret = readline(&line, ">>> "); if (ret == 0) { // EOF break; } if (vstr_len(&line) == 0) { continue; } if (mp_repl_is_compound_stmt(vstr_str(&line))) { for (;;) { vstr_add_char(&line, '\n'); int len = vstr_len(&line); int ret = readline(&line, "... "); if (ret == 0 || vstr_len(&line) == len) { // done entering compound statement break; } } } mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, vstr_str(&line), vstr_len(&line), 0); qstr parse_exc_id; const char *parse_exc_msg; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_SINGLE_INPUT, &parse_exc_id, &parse_exc_msg); qstr source_name = mp_lexer_source_name(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_lexer_show_error_pythonic_prefix(lex); printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg); mp_lexer_free(lex); } else { // parse okay mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, true); mp_parse_node_free(pn); if (module_fun != mp_const_none) { nlr_buf_t nlr; uint32_t start = sys_tick_counter; if (nlr_push(&nlr) == 0) { rt_call_function_0(module_fun); nlr_pop(); // optional timing if (0) { uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly printf("(took %lu ms)\n", ticks); } } else { // uncaught exception mp_obj_print_exception((mp_obj_t)nlr.ret_val); } } } } stdout_tx_str("\r\n"); } bool do_file(const char *filename) { mp_lexer_t *lex = mp_lexer_new_from_file(filename); if (lex == NULL) { printf("could not open file '%s' for reading\n", filename); return false; } qstr parse_exc_id; const char *parse_exc_msg; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_exc_id, &parse_exc_msg); qstr source_name = mp_lexer_source_name(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_lexer_show_error_pythonic_prefix(lex); printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg); mp_lexer_free(lex); return false; } mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, false); mp_parse_node_free(pn); if (module_fun == mp_const_none) { return false; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { rt_call_function_0(module_fun); nlr_pop(); return true; } else { // uncaught exception mp_obj_print_exception((mp_obj_t)nlr.ret_val); return false; } } mp_obj_t pyb_gpio(uint n_args, mp_obj_t *args) { //assert(1 <= n_args && n_args <= 2); const char *pin_name = mp_obj_str_get_str(args[0]); GPIO_TypeDef *port; switch (pin_name[0]) { case 'A': case 'a': port = GPIOA; break; case 'B': case 'b': port = GPIOB; break; case 'C': case 'c': port = GPIOC; break; default: goto pin_error; } uint pin_num = 0; for (const char *s = pin_name + 1; *s; s++) { if (!('0' <= *s && *s <= '9')) { goto pin_error; } pin_num = 10 * pin_num + *s - '0'; } if (!(0 <= pin_num && pin_num <= 15)) { goto pin_error; } if (n_args == 1) { // get pin if ((port->IDR & (1 << pin_num)) != (uint32_t)Bit_RESET) { return MP_OBJ_NEW_SMALL_INT(1); } else { return MP_OBJ_NEW_SMALL_INT(0); } } else { // set pin if (rt_is_true(args[1])) { // set pin high port->BSRRL = 1 << pin_num; } else { // set pin low port->BSRRH = 1 << pin_num; } return mp_const_none; } pin_error: nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_ValueError, "pin %s does not exist", pin_name)); } MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio); mp_obj_t pyb_hid_send_report(mp_obj_t arg) { mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4); uint8_t data[4]; data[0] = mp_obj_get_int(items[0]); data[1] = mp_obj_get_int(items[1]); data[2] = mp_obj_get_int(items[2]); data[3] = mp_obj_get_int(items[3]); usb_hid_send_report(data); return mp_const_none; } mp_obj_t pyb_rng_get(void) { return mp_obj_new_int(RNG_GetRandomNumber() >> 16); } int main(void) { // TODO disable JTAG // update the SystemCoreClock variable SystemCoreClockUpdate(); // set interrupt priority config to use all 4 bits for pre-empting NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4); // enable the CCM RAM and the GPIO's RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN; #if MICROPY_HW_HAS_SDCARD { // configure SDIO pins to be high to start with (apparently makes it more robust) // FIXME this is not making them high, it just makes them outputs... GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOC, &GPIO_InitStructure); // Configure PD.02 CMD line GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_Init(GPIOD, &GPIO_InitStructure); } #endif // basic sub-system init sys_tick_init(); led_init(); #if MICROPY_HW_ENABLE_RTC rtc_init(); #endif // turn on LED to indicate bootup led_state(PYB_LED_G1, 1); // more sub-system init #if MICROPY_HW_HAS_SWITCH switch_init(); #endif storage_init(); // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP //pyb_usart_global_debug = PYB_USART_3; //usart_init(pyb_usart_global_debug, 115200); int first_soft_reset = true; soft_reset: // GC init gc_init(&_heap_start, (void*)HEAP_END); // Micro Python init qstr_init(); rt_init(); #if MICROPY_HW_HAS_LCD // LCD init (just creates class, init hardware by calling LCD()) lcd_init(); #endif #if MICROPY_HW_ENABLE_SERVO // servo servo_init(); #endif #if MICROPY_HW_ENABLE_AUDIO // audio audio_init(); #endif #if MICROPY_HW_ENABLE_TIMER // timer timer_init(); #endif #if MICROPY_HW_ENABLE_RNG // RNG RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE); RNG_Cmd(ENABLE); #endif // add some functions to the python namespace { rt_store_name(MP_QSTR_help, rt_make_function_n(0, pyb_help)); mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb); rt_store_attr(m, MP_QSTR_info, rt_make_function_n(0, pyb_info)); #if MICROPY_HW_HAS_SDCARD rt_store_attr(m, MP_QSTR_sd_test, rt_make_function_n(0, pyb_sd_test)); #endif rt_store_attr(m, MP_QSTR_stop, rt_make_function_n(0, pyb_stop)); rt_store_attr(m, MP_QSTR_standby, rt_make_function_n(0, pyb_standby)); rt_store_attr(m, MP_QSTR_source_dir, rt_make_function_n(1, pyb_source_dir)); rt_store_attr(m, MP_QSTR_main, rt_make_function_n(1, pyb_main)); rt_store_attr(m, MP_QSTR_sync, rt_make_function_n(0, pyb_sync)); rt_store_attr(m, MP_QSTR_gc, (mp_obj_t)&pyb_gc_obj); rt_store_attr(m, MP_QSTR_delay, rt_make_function_n(1, pyb_delay)); #if MICROPY_HW_HAS_SWITCH rt_store_attr(m, MP_QSTR_switch, (mp_obj_t)&pyb_switch_obj); #endif #if MICROPY_HW_ENABLE_SERVO rt_store_attr(m, MP_QSTR_servo, rt_make_function_n(2, pyb_servo_set)); #endif rt_store_attr(m, MP_QSTR_pwm, rt_make_function_n(2, pyb_pwm_set)); #if MICROPY_HW_HAS_MMA7660 rt_store_attr(m, MP_QSTR_accel, (mp_obj_t)&pyb_mma_read_obj); rt_store_attr(m, MP_QSTR_mma_read, (mp_obj_t)&pyb_mma_read_all_obj); rt_store_attr(m, MP_QSTR_mma_mode, (mp_obj_t)&pyb_mma_write_mode_obj); #endif rt_store_attr(m, MP_QSTR_hid, rt_make_function_n(1, pyb_hid_send_report)); #if MICROPY_HW_HAS_RTC rt_store_attr(m, MP_QSTR_time, rt_make_function_n(0, pyb_rtc_read)); #endif #if MICROPY_HW_ENABLE_RNG rt_store_attr(m, MP_QSTR_rand, rt_make_function_n(0, pyb_rng_get)); #endif rt_store_attr(m, MP_QSTR_Led, (mp_obj_t)&pyb_Led_obj); #if MICROPY_HW_ENABLE_SERVO rt_store_attr(m, MP_QSTR_Servo, rt_make_function_n(1, pyb_Servo)); #endif rt_store_attr(m, MP_QSTR_I2C, rt_make_function_n(2, pyb_I2C)); rt_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj); rt_store_attr(m, MP_QSTR_Usart, rt_make_function_n(2, pyb_Usart)); rt_store_attr(m, qstr_from_str("ADC_all"), (mp_obj_t)&pyb_ADC_all_obj); rt_store_attr(m, MP_QSTR_ADC, (mp_obj_t)&pyb_ADC_obj); rt_store_name(MP_QSTR_pyb, m); rt_store_name(MP_QSTR_open, rt_make_function_n(2, pyb_io_open)); } // check if user switch held (initiates reset of filesystem) bool reset_filesystem = false; #if MICROPY_HW_HAS_SWITCH if (switch_get()) { reset_filesystem = true; for (int i = 0; i < 50; i++) { if (!switch_get()) { reset_filesystem = false; break; } sys_tick_delay_ms(10); } } #endif // local filesystem init { // try to mount the flash FRESULT res = f_mount(&fatfs0, "0:", 1); if (!reset_filesystem && res == FR_OK) { // mount sucessful } else if (reset_filesystem || res == FR_NO_FILESYSTEM) { // no filesystem, so create a fresh one // TODO doesn't seem to work correctly when reset_filesystem is true... // LED on to indicate creation of LFS led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; res = f_mkfs("0:", 0, 0); if (res == FR_OK) { // success creating fresh LFS } else { __fatal_error("could not create LFS"); } // create src directory res = f_mkdir("0:/src"); // ignore result from mkdir // create empty main.py FIL fp; f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } else { __fatal_error("could not access LFS"); } } // make sure we have a /boot.py { FILINFO fno; FRESULT res = f_stat("0:/boot.py", &fno); if (res == FR_OK) { if (fno.fattrib & AM_DIR) { // exists as a directory // TODO handle this case // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation } else { // exists as a file, good! } } else { // doesn't exist, create fresh file // LED on to indicate creation of boot.py led_state(PYB_LED_R2, 1); uint32_t stc = sys_tick_counter; FIL fp; f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS); UINT n; f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n); // TODO check we could write n bytes f_close(&fp); // keep LED on for at least 200ms sys_tick_wait_at_least(stc, 200); led_state(PYB_LED_R2, 0); } } // run /boot.py if (!do_file("0:/boot.py")) { flash_error(4); } #ifdef USE_HOST_MODE // USB host pyb_usb_host_init(); #elif defined(USE_DEVICE_MODE) // USB device pyb_usb_dev_init(); #endif if (first_soft_reset) { #if MICROPY_HW_HAS_MMA7660 // MMA: init and reset address to zero mma_init(); #endif } // turn boot-up LED off led_state(PYB_LED_G1, 0); // run main script { vstr_t *vstr = vstr_new(); vstr_add_str(vstr, "0:/"); if (pyb_config_source_dir == MP_OBJ_NULL) { vstr_add_str(vstr, "src"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir)); } vstr_add_char(vstr, '/'); if (pyb_config_main == MP_OBJ_NULL) { vstr_add_str(vstr, "main.py"); } else { vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main)); } if (!do_file(vstr_str(vstr))) { flash_error(3); } vstr_free(vstr); } #if MICROPY_HW_HAS_MMA7660 // HID example if (0) { uint8_t data[4]; data[0] = 0; data[1] = 1; data[2] = -2; data[3] = 0; for (;;) { #if MICROPY_HW_HAS_SWITCH if (switch_get()) { data[0] = 0x01; // 0x04 is middle, 0x02 is right } else { data[0] = 0x00; } #else data[0] = 0x00; #endif mma_start(0x4c /* MMA_ADDR */, 1); mma_send_byte(0); mma_restart(0x4c /* MMA_ADDR */, 0); for (int i = 0; i <= 1; i++) { int v = mma_read_ack() & 0x3f; if (v & 0x20) { v |= ~0x1f; } data[1 + i] = v; } mma_read_nack(); usb_hid_send_report(data); sys_tick_delay_ms(15); } } #endif #if MICROPY_HW_HAS_WLAN // wifi pyb_wlan_init(); pyb_wlan_start(); #endif do_repl(); printf("PYB: sync filesystems\n"); pyb_sync(); printf("PYB: soft reboot\n"); first_soft_reset = false; goto soft_reset; } // these 2 functions seem to actually work... no idea why // replacing with libgcc does not work (probably due to wrong calling conventions) double __aeabi_f2d(float x) { // TODO return 0.0; } float __aeabi_d2f(double x) { // TODO return 0.0; } double sqrt(double x) { // TODO return 0.0; } machine_float_t machine_sqrt(machine_float_t x) { // TODO return x; }