/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Glenn Ruben Bakke * Copyright (c) 2018 Ayke van Laethem * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "pin.h" #include "genhdr/pins.h" #include "uart.h" #include "mpconfigboard.h" #include "nrf.h" #include "mphalport.h" #include "nrfx_uart.h" #if MICROPY_PY_MACHINE_UART typedef struct _machine_hard_uart_obj_t { mp_obj_base_t base; const nrfx_uart_t * p_uart; // Driver instance byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars } machine_hard_uart_obj_t; static const nrfx_uart_t instance0 = NRFX_UART_INSTANCE(0); STATIC const machine_hard_uart_obj_t machine_hard_uart_obj[] = { {{&machine_hard_uart_type}, .p_uart = &instance0}, }; void uart_init0(void) { } STATIC int uart_find(mp_obj_t id) { // given an integer id int uart_id = mp_obj_get_int(id); if (uart_id >= 0 && uart_id < MP_ARRAY_SIZE(machine_hard_uart_obj)) { return uart_id; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id)); } void uart_irq_handler(mp_uint_t uart_id) { } bool uart_rx_any(const machine_hard_uart_obj_t *uart_obj) { // TODO: uart will block for now. return true; } int uart_rx_char(const machine_hard_uart_obj_t * self) { uint8_t ch; nrfx_uart_rx(self->p_uart, &ch, 1); return (int)ch; } STATIC nrfx_err_t uart_tx_char(const machine_hard_uart_obj_t * self, int c) { while (nrfx_uart_tx_in_progress(self->p_uart)) { ; } return nrfx_uart_tx(self->p_uart, (uint8_t *)&c, 1); } void uart_tx_strn(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { uart_tx_char(uart_obj, *str); } } void uart_tx_strn_cooked(const machine_hard_uart_obj_t *uart_obj, const char *str, uint len) { for (const char *top = str + len; str < top; str++) { if (*str == '\n') { uart_tx_char(uart_obj, '\r'); } uart_tx_char(uart_obj, *str); } } /******************************************************************************/ /* MicroPython bindings */ STATIC void machine_hard_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { } /// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64) /// /// Initialise the UART bus with the given parameters: /// - `id`is bus id. /// - `baudrate` is the clock rate. /// - `bits` is the number of bits per byte, 7, 8 or 9. /// - `parity` is the parity, `None`, 0 (even) or 1 (odd). /// - `stop` is the number of stop bits, 1 or 2. /// - `timeout` is the timeout in milliseconds to wait for the first character. /// - `timeout_char` is the timeout in milliseconds to wait between characters. /// - `read_buf_len` is the character length of the read buffer (0 to disable). STATIC mp_obj_t machine_hard_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_id, ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_flow, ARG_timeout, ARG_timeout_char, ARG_read_buf_len }; static const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get static peripheral object int uart_id = uart_find(args[ARG_id].u_obj); const machine_hard_uart_obj_t * self = &machine_hard_uart_obj[uart_id]; nrfx_uart_config_t config; // flow control config.hwfc = args[ARG_flow].u_int; #if MICROPY_HW_UART1_HWFC config.hwfc = NRF_UART_HWFC_ENABLED; #else config.hwfc = NRF_UART_HWFC_DISABLED; #endif config.parity = NRF_UART_PARITY_EXCLUDED; #if (BLUETOOTH_SD == 100) config.interrupt_priority = 3; #else config.interrupt_priority = 6; #endif switch (args[ARG_baudrate].u_int) { case 1200: config.baudrate = NRF_UART_BAUDRATE_1200; break; case 2400: config.baudrate = NRF_UART_BAUDRATE_2400; break; case 4800: config.baudrate = NRF_UART_BAUDRATE_4800; break; case 9600: config.baudrate = NRF_UART_BAUDRATE_9600; break; case 14400: config.baudrate = NRF_UART_BAUDRATE_14400; break; case 19200: config.baudrate = NRF_UART_BAUDRATE_19200; break; case 28800: config.baudrate = NRF_UART_BAUDRATE_28800; break; case 38400: config.baudrate = NRF_UART_BAUDRATE_38400; break; case 57600: config.baudrate = NRF_UART_BAUDRATE_57600; break; case 76800: config.baudrate = NRF_UART_BAUDRATE_76800; break; case 115200: config.baudrate = NRF_UART_BAUDRATE_115200; break; case 230400: config.baudrate = NRF_UART_BAUDRATE_230400; break; case 250000: config.baudrate = NRF_UART_BAUDRATE_250000; break; case 1000000: config.baudrate = NRF_UART_BAUDRATE_1000000; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART baudrate not supported, %u", args[ARG_baudrate].u_int)); break; } config.pseltxd = MICROPY_HW_UART1_TX; config.pselrxd = MICROPY_HW_UART1_RX; #if MICROPY_HW_UART1_HWFC config.pselrts = MICROPY_HW_UART1_RTS; config.pselcts = MICROPY_HW_UART1_CTS; #endif // Set context to this instance of UART config.p_context = (void *)self; // Set NULL as callback function to keep it blocking nrfx_uart_init(self->p_uart, &config, NULL); nrfx_uart_rx_enable(self->p_uart); return MP_OBJ_FROM_PTR(self); } /// \method writechar(char) /// Write a single character on the bus. `char` is an integer to write. /// Return value: `None`. STATIC mp_obj_t machine_hard_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) { machine_hard_uart_obj_t *self = self_in; // get the character to write (might be 9 bits) uint16_t data = mp_obj_get_int(char_in); nrfx_err_t err = NRFX_SUCCESS; for (int i = 0; i < 2; i++) { err = uart_tx_char(self, (int)(&data)[i]); } if (err != NRFX_SUCCESS) { mp_hal_raise(err); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_hard_uart_writechar_obj, machine_hard_uart_writechar); /// \method readchar() /// Receive a single character on the bus. /// Return value: The character read, as an integer. Returns -1 on timeout. STATIC mp_obj_t machine_hard_uart_readchar(mp_obj_t self_in) { machine_hard_uart_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_readchar_obj, machine_hard_uart_readchar); // uart.sendbreak() STATIC mp_obj_t machine_hard_uart_sendbreak(mp_obj_t self_in) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_sendbreak_obj, machine_hard_uart_sendbreak); STATIC const mp_rom_map_elem_t machine_hard_uart_locals_dict_table[] = { // instance methods /// \method read([nbytes]) { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, /// \method readline() { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, /// \method readinto(buf[, nbytes]) { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, /// \method writechar(buf) { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_hard_uart_writechar_obj) }, { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_hard_uart_readchar_obj) }, { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_hard_uart_sendbreak_obj) }, // class constants /* { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, */ }; STATIC MP_DEFINE_CONST_DICT(machine_hard_uart_locals_dict, machine_hard_uart_locals_dict_table); STATIC mp_uint_t machine_hard_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { const machine_hard_uart_obj_t *self = self_in; byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } // convert byte size to char size size >>= self->char_width; // make sure we want at least 1 char if (size == 0) { return 0; } // read the data byte * orig_buf = buf; for (;;) { int data = uart_rx_char(self); *buf++ = data; if (--size == 0) { // return number of bytes read return buf - orig_buf; } } } STATIC mp_uint_t machine_hard_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_hard_uart_obj_t *self = self_in; const byte *buf = buf_in; // check that size is a multiple of character width if (size & self->char_width) { *errcode = MP_EIO; return MP_STREAM_ERROR; } nrfx_err_t err = NRFX_SUCCESS; for (int i = 0; i < size; i++) { err = uart_tx_char(self, (int)((uint8_t *)buf)[i]); } if (err == NRFX_SUCCESS) { // return number of bytes written return size; } else { *errcode = mp_hal_status_to_errno_table[err]; return MP_STREAM_ERROR; } } STATIC mp_uint_t machine_hard_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_hard_uart_obj_t *self = self_in; (void)self; return MP_STREAM_ERROR; } STATIC const mp_stream_p_t uart_stream_p = { .read = machine_hard_uart_read, .write = machine_hard_uart_write, .ioctl = machine_hard_uart_ioctl, .is_text = false, }; const mp_obj_type_t machine_hard_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = machine_hard_uart_print, .make_new = machine_hard_uart_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t*)&machine_hard_uart_locals_dict, }; #endif // MICROPY_PY_MACHINE_UART