#include #include #include #include #include "mma.h" void mma_init(void) { RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; // enable I2C1 //gpio_pin_init(GPIOB, 6 /* B6 is SCL */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_init(GPIOB, 7 /* B7 is SDA */, 2 /* AF mode */, 1 /* open drain output */, 1 /* 25 MHz */, 0 /* no pull up or pull down */); //gpio_pin_af(GPIOB, 6, 4 /* AF 4 for I2C1 */); //gpio_pin_af(GPIOB, 7, 4 /* AF 4 for I2C1 */); // XXX untested GPIO init! (was above code) GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1); GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_I2C1); // get clock speeds RCC_ClocksTypeDef rcc_clocks; RCC_GetClocksFreq(&rcc_clocks); // disable the I2C peripheral before we configure it I2C1->CR1 &= ~I2C_CR1_PE; // program peripheral input clock I2C1->CR2 = 4; // no interrupts; 4 MHz (hopefully!) (could go up to 42MHz) // configure clock control reg uint32_t freq = rcc_clocks.PCLK1_Frequency / (100000 << 1); // want 100kHz, this is the formula for freq I2C1->CCR = freq; // standard mode (speed), freq calculated as above // configure rise time reg I2C1->TRISE = (rcc_clocks.PCLK1_Frequency / 1000000) + 1; // formula for trise, gives maximum rise time // enable the I2C peripheral I2C1->CR1 |= I2C_CR1_PE; // set START bit in CR1 to generate a start cond! } static uint32_t i2c_get_sr(void) { // must read SR1 first, then SR2, as the read can clear some flags uint32_t sr1 = I2C1->SR1; uint32_t sr2 = I2C1->SR2; return (sr2 << 16) | sr1; } void mma_restart(uint8_t addr, int write) { // send start condition I2C1->CR1 |= I2C_CR1_START; // wait for BUSY, MSL and SB --> Slave has acknowledged start condition while ((i2c_get_sr() & 0x00030001) != 0x00030001) { } if (write) { // send address and write bit I2C1->DR = (addr << 1) | 0; // wait for BUSY, MSL, ADDR, TXE and TRA while ((i2c_get_sr() & 0x00070082) != 0x00070082) { } } else { // send address and read bit I2C1->DR = (addr << 1) | 1; // wait for BUSY, MSL and ADDR flags while ((i2c_get_sr() & 0x00030002) != 0x00030002) { } } } void mma_start(uint8_t addr, int write) { // wait until I2C is not busy while (I2C1->SR2 & I2C_SR2_BUSY) { } // do rest of start mma_restart(addr, write); } void mma_send_byte(uint8_t data) { // send byte I2C1->DR = data; // wait for TRA, BUSY, MSL, TXE and BTF (byte transmitted) int timeout = 1000000; while ((i2c_get_sr() & 0x00070084) != 0x00070084) { if (timeout-- <= 0) { printf("mma_send_byte timed out!\n"); break; } } } uint8_t mma_read_ack(void) { // enable ACK of received byte I2C1->CR1 |= I2C_CR1_ACK; // wait for BUSY, MSL and RXNE (byte received) while ((i2c_get_sr() & 0x00030040) != 0x00030040) { } // read and return data uint8_t data = I2C1->DR; return data; } uint8_t mma_read_nack(void) { // disable ACK of received byte (to indicate end of receiving) I2C1->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK); // last byte should apparently also generate a stop condition I2C1->CR1 |= I2C_CR1_STOP; // wait for BUSY, MSL and RXNE (byte received) while ((i2c_get_sr() & 0x00030040) != 0x00030040) { } // read and return data uint8_t data = I2C1->DR; return data; } void mma_stop(void) { // send stop condition I2C1->CR1 |= I2C_CR1_STOP; }